
QFrag: Distributed Graph Search via Subgraph Isomorphism

Marco Serafini, Gianmarco De Francisci Morales, and Georgos Siganos
Qatar Computing Research Institute - HBKU

HBKU Research Complex 1
Doha, Qatar

{mserafini,gmorales,gsiganos}@hbku.edu.qa

ABSTRACT

This paper introduces QFrag, a distributed system for graph
search on top of bulk synchronous processing (BSP) systems
such as MapReduce and Spark. Searching for patterns in
graphs is an important and computationally complex problem.
Most current distributed search systems scale to graphs that
do not fit in main memory by partitioning the input graph.
For analytical queries, however, this approach entails running
expensive distributed joins on large intermediate data.

In this paper we explore an alternative approach: repli-
cating the input graph and running independent parallel
instances of a sequential graph search algorithm. In prin-
ciple, this approach leads us to an embarrassingly parallel
problem, since workers can complete their tasks in parallel
without coordination. However, the skew present in natural
graphs makes this problem a deceitfully parallel one, i.e., an
embarrassingly parallel problem with poor load balancing.
We therefore introduce a task fragmentation technique that
avoids stragglers but at the same time minimizes coordination.
Our evaluation shows that QFrag outperforms BSP-based
systems by orders of magnitude, and performs similar to
asynchronous MPI-based systems on simple queries. Further-
more, it is able to run computationally complex analytical
queries that other systems are unable to handle.

CCS CONCEPTS

• Information systems → Data analytics; • Comput-
ing methodologies → Distributed algorithms;

KEYWORDS

Graph Search, Load Balancing, Bulk Synchronous Processing

ACM Reference format:

Marco Serafini, Gianmarco De Francisci Morales, and Georgos
Siganos. 2017. QFrag: Distributed Graph Search via Subgraph

Isomorphism. In Proceedings of SoCC ’17, Santa Clara, CA, USA,

September 24–27, 2017, 15 pages.
DOI: 10.1145/3127479.3131625

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

SoCC ’17, Santa Clara, CA, USA

© 2017 Copyright held by the owner/author(s). Publication rights
licensed to ACM. 978-1-4503-5028-0/17/09. . . $15.00
DOI: 10.1145/3127479.3131625

1 INTRODUCTION

Search is a fundamental primitive in every database. It is
especially important in graph databases, in which patterns
of interest might be hard to find manually. Informally, graph
search implies executing a query that specifies a pattern
of interest in the input graph. The result of the query are
subgraphs of the input graph that match the pattern. This
problem is known in the literature as subgraph isomorphism.

A large number of systems handle graphs and offer search
capabilities: graph databases such as Neo4j,1 many RDF
stores [1, 16, 18, 26, 28], and distributed frameworks on
Apache Spark such as GraphFrames.2 However, many of
these systems are optimized to run transactional queries with
high selectivity. For example, the popular LUBM benchmark
for RDF search [14] mainly consists of queries that start from
a specific vertex and select a small number of vertices up
to few hops away (e.g., ‘Find all students who take CS-101
at MIT’). This kind of query has a small intermediate state
and, in most cases, it can easily be answered by single-server
systems such as Neo4j and RDF-3X [28]. The few distributed
systems among the existing solutions focus on scaling the
same type of queries to large graphs that do not fit in the
memory of a single server [1, 37].

While this problem has its own merit, there is currently
a lack of graph querying systems that can deal with lower
selectivity analytical queries. These queries are usually part
of a data analysis pipeline in the context of complex graph
analysis and mining workflows. Consider for example, queries
that do not start from a specific vertex, such as ‘Find pairs of
students who attended the same course but are not friends’,
or ‘Find groups of three friends who studied at three different
universities’. These queries have much lower selectivity than
the previous example because any university and course could
be involved in a match.

Efficiently running complex analytical graph queries is
becoming more and more important. Recent work proposes
graphs as a formalism to represent dependencies and struc-
tures in very large, unstructured datasets, which are some-
times called “data lakes” or “data oceans” [12, 25]. For
example, Mavlyutov et al. [25] introduce the concept of
Dependency-Driven Analytics (DDA), where raw data is
mapped into a dependency graph, following some user-defined
rules, and then the graph can be explored to navigate the
data in a more understandable and organized way. When
examining the system log of a big data system, for example,

1
http://neo4j.com

2
http://graphframes.github.io

http://neo4j.com
http://graphframes.github.io

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA M. Serafini et al.

vertices may represent the execution of a specific task t at
a given time, a job j, or a server s, and edges can express
that task t is part of job j, or that a specific execution of t
has run on server s. Complex analytical queries such as “find
all pairs of jobs having a task that failed while running on
the same server” can be useful in debugging. Guider, a DDA
tool used by Microsoft, aggregates multiple system logs into
a graph that fits into the main memory of a single server,
and uses a standalone Neo4j instance to query it. But as we
have discussed previously, Neo4j is not optimized for complex
analytical queries, which may thus require bypassing Neo4j
and directly sifting through the raw logs.

Despite their apparent simplicity, analytical queries such
as the ones presented above can quickly become computa-
tionally intractable, even on small graphs. Our evaluation
shows that existing systems are not able to deal with ana-
lytical queries involving patterns of as few as three or four
vertices, even on relatively small graphs with one million
vertices, which easily fit in the memory of one server. This
result is not surprising, given that the subgraph isomorphism
problem is NP-Complete [34]. Partitioning the input graph
introduces an additional communication bottleneck to an
already computationally complex problem.

Our proposal. In this paper we introduce QFrag, a frame-
work for distributed graph search that is specifically designed
to deal with computationally complex queries rather than
with extremely large graphs. QFrag is based on the insight
that graph search is inherently computationally expensive,
and that many practical graphs fit the (ever-growing) main
memory of a single server, as also observed more in general for
data analytics workloads [32]. Therefore, the design principle
of QFrag is to distribute the computation, not the data. As
such, the input graph is replicated on several servers.

Replicating the input graph allows QFrag to reuse the
decades of research in sequential algorithms for subgraph
isomorphism. A simple approach to parallelize graph search
is to have multiple workers run a sequential pattern matching
algorithm in parallel, with each worker starting on a different
set of vertices. With this approach, graph search becomes an
embarrassingly parallel problem, as no coordination among
workers is required. However, while simple, this approach is
not efficient due to the skew present in natural graphs. The
overall running time is often clearly dominated by a handful
of workers, thus limiting the gains from increased parallelism.
We call this class of problems deceitfully parallel : problems
that are embarrassingly parallel in principle, but exhibit poor
scalability due to load imbalance and stragglers.

Parallelization in QFrag. QFrag uses a task fragmenta-
tion approach to deal with deceitfully parallel problems. The
technique consists in subdividing a sequential task into a
sequence of sequential subtasks. In the case of graph search,
the sequential task matches a query pattern starting from
a specific vertex in the input graph by using a sequential
subgraph isomorphism algorithm. Without task fragmenta-
tion, the system runs K instances of the sequential tasks in
parallel, where K is the number of workers, in one single

superstep. With task fragmentation, each task is split into
H subtasks, executed over H supersteps. The goal of task
fragmentation is to ensure that the execution times for sub-
tasks in each superstep are as uniform as possible. To this
end, if the work associated with a subtask is above average,
task fragmentation redistributes some of it across all workers,
and executes it in the next superstep.

An important design choice of QFrag is that it runs on
top of bulk synchronous parallel (BSP) systems such as
MapReduce [11] and Spark [41]. QFrag can thus be easily
integrated in data analytics pipelines running on one of these
platforms: for example, a pipeline can use a tool for large-
scale SQL-like queries to build a graph, then QFrag to filter
subgraphs matching a pattern of interest, and finally run a
user-defined function to analyze the subgraphs. Developing
such integrated pipelines is much needed by the industry, as
also reported by the authors of Guider [25]. The challenge
with running on top of BSP systems is the need to minimize
coordination, which is required for load redistribution. The
replication of the input graph and task fragmentation are
key design choices to achieve this goal.

Thanks to its design, QFrag is faster than production-
grade systems such as Neo4j and GraphFrames (based on
Spark). It outperforms these systems by up to 2 and 3 or-
ders of magnitude, respectively, when running sequentially.
The efficiency of QFrag is such that it runs more than one
order of magnitude faster than GraphFrames on 320 workers,
even when running sequentially. QFrag matches the speed of
asynchronous, MPI-based systems such as TriAD on simple
queries, while at the same time being able to scale to more
complex queries, which any other system is unable to han-
dle. This is because existing systems like GraphFrames and
TriAD scale out by partitioning the input graph, which leads
to additional coordination costs, and because task fragmen-
tation further improves the performance of QFrag by up to
four times.

Clearly, this design philosophy results in some limitations
in the system. First and foremost, QFrag cannot process
graphs which do not fit in main memory. Nevertheless, in
our experiments we show that the computational limits are
reached long before memory becomes an issue. In addition,
QFrag is geared towards analytical workloads, rather than
transactional ones. The design assumes a read-only dataset
and long-running analytical queries, and is thus not suited
for high-throughput low-latency transactional-style queries.

Our contributions can be summarized as follows:

• we introduce QFrag, a distributed system for graph search
based on two main design principles:

• leveraging subgraph isomorphism rather than joins;

• distributing the computation rather than the data;

• QFrag parallelizes state-of-the-art algorithms for sub-
graph isomorphism; as a byproduct, we obtain the first
distributed algorithm for subgraph isomorphism;

QFrag: Distributed Graph Search via Subgraph Isomorphism SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

• QFrag uses a task fragmentation approach to deal with
skew in the input graphs, which improves its performance
by up to 4× compared to a näıve approach;

• an extensive experimental evaluation shows superior per-
formance than other state-of-the-art distributed graph
search systems in running complex analytical queries;

2 TASK FRAGMENTATION

Task fragmentation is a technique to parallelize the execution
of deceitfully parallel sequential algorithms. It is particularly
suited for algorithms running on BSP systems that can ob-
serve stragglers.

System model and requirements. We consider systems
where workers coordinate via a BSP approach, by which a
computation consists of one or more supersteps [40]. In each
superstep, a worker processes input messages sent by the
other workers in the previous superstep, updates its local
state, and sends messages to other workers, if necessary. All
workers execute supersteps synchronously: a superstep starts
only after all messages from the previous superstep have
been delivered. This fact has two important implications for
performance. First, workers interrupt computation while they
send messages to other workers and wait for their messages.
Minimizing the size of the messages maximizes the amount
of time spent doing computation. Second, the time taken by
each worker to complete its computation should be balanced,
lest workers end up being idle waiting for some other straggler.
Task fragmentation allows to balance load while minimizing
coordination by making sure that workers take approximately
the same time to complete a superstep.

We consider a task that is executed by a set of K workers,
each running on a different server and having some local state.
Each worker k receives a set of initial input data items I0k at
the beginning of the computation. The following discussion
describes the execution of a single BSP superstep, but the
technique can be applied to algorithms executing multiple
supersteps. For each data item in I0k , each worker can execute
the sequential algorithm for the superstep from beginning
to end, and thus produce a partial output without requiring
any coordination with other workers. Task fragmentation
introduces additional coordination to avoid stragglers.

Technique. At a high level, task fragmentation breaks the
task T into a sequence of subtasks ST 1, . . . , STH to be ex-
ecuted over H supersteps. Each subtask STh takes a data
item as input and outputs a set of data items, which are
intermediate results to be used as input for the next subtask
STh+1. The intermediate results consist of a list of arbitrary
data items, similar to a dataflow computation. Fragmentation
provides opportunities to balance load by sharing the work
associated with the intermediate results.

The intermediate results are split into two groups, regulars
and outliers, according to a cost function that estimates
the execution time for the next subtask on the given data
item. Processing regular intermediate results is expected
to take approximately the same time at each worker, so
they are locally processed by the next subtask in the same

worker and in the same superstep h. Processing regular items
immediately and locally reduces the amount of data that
needs to be shuffled over the network. Conversely, outliers
are the intermediate results that cause skew in the execution
time per worker, so they are split, shuffled to other workers,
and processed in the following superstep.

Figure 1 shows task fragmentation for a single worker k.
The initial inputs and intermediate results are defined as
follows. Superstep h starts with processing the input set Mh

k .
For the first subtask, Mh

k is the set of initial inputs I0k . For
the following subtasks, it represents the union of all the splits
of the outlier data items produced by each worker during the
previous subtask STh−1 and sent to worker k:

Mh
k =

{
I0k if h = 1⋃
j∈[K]O

h−1
j→k if h > 1

where the set Oh−1 denotes outliers produced in the previous
superstep h1, and the subscript j → k denotes items produced
by worker j and sent to worker k.

The subtask STh produces a set of intermediate results.
These intermediate results, together with the output of the
execution of the current subtask in the previous superstep,
are the input for the outlier detection algorithm

Ihk = STh(Mh
k)

⋃
ŜT

h
(Rh−1

k).

The outlier detection algorithm outlier() separates these
items into two groups, according to a specified cost model:
Ohk is the set of outliers, Rhk is the set of the remaining regular
data items.

Outlier detection must guarantee that the load on each
worker for its local regular items is balanced. Therefore, the
regular items are passed to the next subtask immediately
and locally, and produce a new set of intermediate results
for the next superstep. We denote this execution of the next

subtask as ŜT
h+1

.
The outlier data items are sent to a split() operator, which

takes care of spreading the load of these items across all the
workers, and thus create the input for the next superstep
Mh+1
∗ . This operator splits the outliers into groups with

balanced cost, and sends each group (called a split) to a
different worker.

Applicability. Fragmentation is suitable for tasks where it
is possible to: (i) partition the input in data items, such that
each of them can be processed in parallel by a task without
coordination, (ii) split the task into a sequence of subtasks,
(iii) express intermediate results as a set of data items, (iv)
provide a cost function for each data item, and finally (v)
split outliers into a set of data items with similar cost.

The first three points are related to the system model
we described before. The cost function mentioned in the
fourth point estimates the running time of processing a data
item in the next subtask. More precisely, for each subtask
STh, there must exist a cost function ch that takes a data
item i ∈ Ih−1

∗ as input and returns an estimate of the time
it will take STh to process i. Outlier detection uses the
cost function to guarantee that the cost of processing the

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA M. Serafini et al.

2

!"#$

Superstep h

%&#'(

)&→&#'(

)+→&#'(

,&
-&#!"#

%&#

)&#

./012()
)&→&#

)&→+#

!"$#5(-(,&
#5(

,&
#5(

from
worker j

to
worker j

6720189()

Figure 1: Overview of a single step (subtask) when applying task fragmentation.

regular data items at each worker is balanced, based on some
probabilistic assumptions. Finally, the split operator must
generate balanced splits for the outlier data items.

In this paper, we show how to use task fragmentation
to parallelize graph search, and specifically for tree-based
subgraph isomorphism algorithms such as TurboISO [19].
We believe that task fragmentation is interesting in its own
regard and can be applied to other problems beyond graph
search, however such generalization is beyond the scope of
the current paper and left for future work.

3 SUBGRAPH ISOMORPHISM

QFrag is the first distributed system which uses subgraph
isomorphism for search. This section gives some background
on existing subgraph isomorphism algorithms.

We start by introducing the problem of subgraph isomor-
phism, and describe the general structure of algorithms that
solve this problem, all of which share many similarities.

3.1 Problem Definition

Let G = (VG, EG, LG) be an undirected labeled data graph,
where VG is the set of vertices of G, EG ⊆ VG×VG is the set
of undirected edges, and LG is a labeling function which maps
a vertex or an edge to a set of labels. Let Q = (VQ, EQ, LQ)
be an undirected labeled query graph. Informally, a subgraph
isomorphism is a subgraph of the data graph which matches
the query graph. In the subgraph isomorphism jargon, the
terms subgraph isomorphism and embedding can be used
interchangeably. A partial embedding is a subgraph of the data
graph that at least partially matches the query graph. Each
embedding corresponds to a mapping between query vertices
and the vertices of the embedding. This mapping is typically
defined as an injective function, i.e., a data vertex can map
to only one query vertex. However, subgraph isomorphism
algorithms can be trivially adapted to relax this constraint.

3.2 Tree-Based Algorithms

We now describe more in details the characteristic of state-
of-the-art sequential subgraph isomorphism algorithms such
as TurboISO and subsequent work [4, 19, 29]. We call these

algorithms tree-based because they start by transforming
the query graph into a spanning tree and by matching this
tree. To clarify the mapping between task fragmentation and
subgraph isomorphism, we describe the latter in terms of
two phases, tree building and embedding enumeration, which
correspond to two subtasks. We now describe these phases
more in detail.

Tree building phase. The goal of the first phase is to
quickly identify the subgraphs that might match the query.
It produces a set of candidate trees, which are used by the
subsequent embedding enumeration phase.

The first step in the tree building phase is to identify a root
vertex sQ ∈ VQ in the query graph. Different algorithms use
different heuristics for this selection. For example, TurboISO
favors query vertices that have higher degree in the query
graph and whose label has fewer matches in the data graph.
Next, the algorithm creates a spanning query tree Qt in the
query graph, via a breadth-first exploration from sQ. The
edges of the query graph that are not included in the spanning
tree are called cross-edges. Figure 2 shows an example of a
spanning query tree.

After identifying a spanning tree in Q, the tree building
phase builds a candidate tree CT (r) for each vertex r ∈ VG
of the data graph that matches the root of the spanning
query tree sQ. The root node of a candidate tree CT (r) is
the vertex r. The other nodes of the tree are sets of vertices
in VG called domains. Each node in the candidate tree, i.e.,
each domain, corresponds to a node in the spanning query
tree. For example, a candidate tree CT (r) for the spanning
query tree of Figure 2 has a root r matching q1, two level-
one domains D(q2) and D(q5) corresponding to q2 and q5
respectively, and three level-two domains.

The tree building phase matches one query vertex at a
time, according to a depth-first order on the spanning query
tree. It builds a domain by adding neighbors of the vertices
in the parent domain. For example, when matching q3, it
adds v to D(q3) if v has the same label as q3 and there exists
a vertex v′ ∈ D(q2) such that the edge (v′, v) has the same
label as the edge (q2, q3).

Figure 3 shows how TurboISO stores the candidate tree
for the spanning query tree of Figure 2. Each domain D(qi)

QFrag: Distributed Graph Search via Subgraph Isomorphism SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

q1

q2 q5

q3 q4 q6

Spanning tree
Cross-edge

Figure 2: Example of query graph Q. The full edges
are part of the spanning query tree Qt, the dashed
edges are cross-edges. The vertex IDs denote the
depth-first order in which vertices are matched in
the tree building phase.

consists of a set of candidate subregions, where CS(qi, vj)
is the set of data vertices that match qi and that can be
reached from a vertex vj in the parent domain.

Embedding enumeration phase. The embedding enu-
meration phase enumerates partial embeddings based on the
candidate tree. For each candidate tree CT (r), it checks
whether the cross-edges required by the query graph are
present. Partial embeddings are reproduced in a depth-first
order, although the order in which the domains of a tree are
visited can be changed for efficiency on a tree-by-tree basis.
Consider for example the candidate tree of Figure 3, where
the query vertices and the domains are explored in the order
〈q1, q2, q3, q4, q5, q6〉. A possible reordering that still induces
a depth-first visit is 〈q1, q5, q6, q2, q4, q3〉.

The order of query vertices for a given candidate tree
CT (r) is called matching order. In the example of Figure 3, if
the matching order of CT (r) is 〈q1, q5, q6, q2, q4, q3〉 and the
current partial embedding is M = 〈r, v3〉 matching 〈q1, q5〉,
the next vertices to be added to M are the ones in CS(q6, v3).
Different algorithms use different reordering heuristics to
determine matching orders. Each candidate tree can have
a different matching order, based on the cardinality of its
domains. We consider TurboISO’s heuristic, which orders
first the paths having more cross edges and whose leaves
have smaller cardinality. These paths have higher selectivity,
so they are more likely to reduce the number of embeddings
that need to be enumerated.

Cost of the two phases. Tree building is much faster than
embedding enumeration, as it does not require rebuilding
complete embeddings. Consider, for instance, the candidate
tree of Figure 3. In order to populate the domain D(q6), it is
sufficient to scan all data vertices in D(q5). For each vertex,
we add to D(q6) all the neighbors that match the label of
the query vertex q6 and of the edge (q5, q6). Therefore, tree
building visits the elements of a domain D only once (or
never, if D corresponds to a leaf of the spanning query tree).

Embedding enumeration, instead, entails enumerating all
the combinations of vertices (one for each domain) that
constitute an embedding. Consider again the candidate tree
of Figure 3. Embeddings are enumerated in a depth-first
fashion by adding vertices from one domain at a time. The
algorithm starts building the partial embedding 〈r〉, then
〈r, v1〉, and so on. After reaching the maximum size of an

r
v1

v2

CS(q2,r)

⠸

CS(q3,v1)

⠸

CS(q3,v2)

⠸

CS(q4,v2)

⠸

CS(q4,v1)

⠸

CS(q6,v3)

⠸

CS(q6,v4)

⠸

CS(q6,v5)

v3

v4

v5

CS(q5,r)

D(q1) D(q2) D(q3) D(q4) D(q5) D(q6)

Figure 3: Example of candidate tree for the query
graph in Figure 2. The candidate tree represents the
candidate tree CT (r) for root data vertex r. Boxes
represent candidate subregions. Dashed lines show
domains D(qi), which are sorted in the order in which
query vertices are matched during the tree building
phase. Edges are parent-child relationships in the
spanning query tree.

embedding, which is six in our example, the enumeration
backtracks and considers other branches.

To see why embedding enumeration is more complex, we
look at vertex v3 ∈ D(q5) of Figure 3. As discussed previously,
tree building visits v3 only once. We now count the times v3
is visited during the embedding enumeration phase. Assume
that the matching order is 〈q1, q2, q3, q4, q5, q6〉. The query
graph of Figure 2 has cross edges between q3, q4, and q6.
Therefore, we must enumerate all embeddings corresponding
to all the combinations of vertices matching q3, q4, and q6,
and check the cross edges among these vertices. This im-
plies considering, among others, all combinations of embed-
dings of the form 〈r, v1, vi, vj , v3〉, where vi ∈ CS(q3, v1) and
vj ∈ CS(q4, v1). Therefore, vertex v3 in D(q5) will be visited
at least |CS(q3, v1)|×|CS(q4, v1)| times. Considering also em-
beddings of the form 〈r, v2, vi, vj , v3〉, we obtain that v3 is vis-
ited (|CS(q3, v1)|×|CS(q4, v1)|)+(|CS(q3, v2)|×|CS(q4, v2)|)
times in total.

4 QFRAG

The QFrag distributed graph search framework aims at scal-
ing out the execution of tree-based sequential subgraph iso-
morphism algorithms. Its parallelization policy is an instance
of the general task fragmentation template described in Sec-
tion 2. In order to test the efficacy of our proposal, we imple-
ment two different parallelization policies for QFrag, embar-
rassingly parallel and task fragmentation, which we describe
in the following.

4.1 Embarrassingly Parallel

The initial task for QFrag is a sequential tree-based subgraph
isomorphism algorithm based on TurboISO, as described
in the previous section. The embarrassingly parallel policy
assigns the starting data vertex with ID v to the worker
h(v) mod p, where p is the number of workers and h a hash

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA M. Serafini et al.

100 101 102 103 104

Root vertex (rank)

10-4
10-3
10-2
10-1
100
101
102
103
104

E
nu

m
er

at
io

n
tim

e
(m

s)

Patent
LiveJournal

Figure 4: Per-tree distribution of enumeration times
for Q5u (unlabeled triangles) on Patent and Live-
Journal. The LiveJournal graph has a much more
skewed workload.

function. The entire task, comprising both phases of the algo-
rithm (tree building and embedding enumeration) described
in Section 3, is run until completion by the assigned worker
in one BSP superstep. The embarrassingly parallel nature of
this policy stems from the fact that in QFrag each worker has
access to a full copy of the input graph, and thus it has all the
information to execute the complete subgraph isomorphism
algorithm on a candidate tree.

This policy is simple and effective, but has a major limita-
tion. It is well known that many natural graphs are charac-
terized by skew: some vertices are connected to a much larger
set of neighbors than others. Indeed, the vertex degrees often
follow a power-law distribution [7, 13]. As a result, the size
of a candidate region, and thus the amount of work for each
root data vertex, can vary significantly.

Figure 4 reports the per-candidate-tree distribution of
running time of the embedding enumeration phase for two
input graphs: Patent, a citation graph, and LiveJournal, a
social network (see Section 5 for more details). The query
graph is an unlabeled triangle. The plot, in log-log scale,
shows that the range of execution times spans five to six
orders of magnitude. In addition, the most expensive trees
in the LiveJournal graph take one order of magnitude longer
than in the Patent graph. Such heavy skew in the workload
hinders effective parallelization of the algorithm.

The embarrassingly parallel policy uniformly partitions
root vertices, and thus candidate trees, among the workers in
the system. The per-worker skew is lower than the per-tree
skew due to aggregation, as shown in Figure 5. For graphs
that are not very skewed, such as Patent, the embarrassingly
parallel policy is adequate, and task fragmentation performs
similarly. However, for skewed graphs such as LiveJournal
the difference in load among workers is still significant, so
task fragmentation results in a substantial speedup.

4.2 Task Fragmentation

The problem of skew motivates us to use task fragmentation
to balance the load in presence of outlier candidate trees,
which are expensive candidate trees which carry a dispropor-
tionate amount of work.

By using task fragmentation, QFrag is able to share the
load of processing heavy trees across the workers. Balancing

0 100 200
Worker ID

0

10000

20000

30000

40000

50000

60000

70000

E
xe

cu
tio

n
tim

e
(m

s)

LiveJournal

Embarrassingly Parallel
Task Fragmentation (superstep 1)
Task Fragmentation (superstep 2)

0 100 200
Worker ID

0

500

1000

1500

2000

2500

3000

E
xe

cu
tio

n
tim

e
(m

s)

Patent

Figure 5: Cumulative execution time per worker
with Embarrassingly Parallel and Task Fragmenta-
tion parallelization (sum of the two phases) for an
example query (Q5u, triangles). For a skewed graph
such as LiveJournal, Task Fragmentation creates a
much more uniform workload distribution, which is
more amenable to parallelization. For a less skewed
graph, such as Patent, the gain from Task Fragmen-
tation is not significant enough to compensate the
overhead, thus making it slightly more expensive
than the Embarrassingly Parallel policy.

load in our setting is particularly challenging because graph
exploration with local graph access is extremely fast compared
to the cost of coordination. In order to minimize the cost of
rebalancing, task fragmentation focuses on identifying the
few heavy trees that cause most of the work. The pseudocode
for task fragmentation in QFrag is illustrated in Algorithm 1.

Fragmenting to subtasks. The initial task for QFrag is
a sequential tree-based subgraph isomorphism algorithm,
as described in the previous section. QFrag subdivides the
sequential graph exploration logic into two subtasks, tree
building and embedding enumeration, which correspond to
the two phases described in Section 3. The tree building
function (i.e., ST 1 in the notation of Section 2) takes as
input one root vertex r ∈ VG and outputs a candidate tree
CT (r) as intermediate result. A worker can receive multiple
root vertices as input and produce multiple candidate trees.
The embedding enumeration function (i.e., ST 2) takes
as input one candidate tree CT (r) and outputs the set of
embeddings of the query graph that are rooted in r. Following
the notation of Section 2, I0k is the set of root vertices received
by worker k. Each root vertex represents a data item in I0k
and generates a candidate tree, which is a data item in the
I1k set. Each final output embedding is a data item in I2k .

QFrag: Distributed Graph Search via Subgraph Isomorphism SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

Algorithm 1: Task Fragmentation for graph search -
worker k
input : I0

k: Set of root vertices assigned to worker k
input : G: Data graph, Q: query graph
output : All subgraphs of G matching Q

Superstep 1

foreach v ∈ C do
CT (r)← tree building(v);

if |T | < k then
add CT (r) to T ;

else
next ← CT (r);

CT (rm)← CT (r) ∈ T with minimum cost;

if cost(CT (r)) > CT (rm) then
replace CT (rm) with CT (r) in T ;

next ← CT (rm);

Ek(r)← embedding enumeration(next);

output Ek(r);

foreach CT (r) ∈ T do
{CTk→1(r), . . . , CTk→K(r)} ← split(CT (r));

foreach i ∈ [1, K] do
send CTk→i(r) to worker i;

Superstep 2

M ← set of received candidate trees;

foreach CT (r) ∈ S do
Ek(r)← embedding enumeration(CT (r));

output Ek(r);

The execution time of tree building is orders of magni-
tude smaller than the one of embedding enumeration, as
we have discussed in Section 3.2. Therefore, determining a
good partitioning of the root vertices to give as initial input
to tree building is not very important in terms of global
execution time, because any skew that might arise is not
relevant in absolute terms. Focusing on balancing the load of
embedding enumeration is thus sufficient.

QFrag runs the subtasks on a distributed system with
multiple workers. It ensures that each worker has a local,
read-only copy of the input query and data graphs. Each
subtask has access to this input. Many subgraph isomorphism
algorithm perform a preprocessing of the query graph, for
example in order to build the spanning query tree, or to
identify symmetries in the query graph that can simplify
enumeration. QFrag executes this preprocessing locally at
each worker. The initialization code must be deterministic
so that each worker can independently initialize the state
without coordination.

Outlier detection. The outlier detection policy for graph
search is simple: the outlier candidate trees are the top κ%
trees by estimated cost for the next subtask. In the first
superstep, each worker performs tree building, and computes
the estimated cost of each tree CT (r) it builds by using a
cost function that we describe shortly. Each worker also keeps
a priority queue T of the top κ% most expensive trees it has
built so far (outliers). Candidate trees that are not added to
T , or that are added and later removed (i.e., regular trees),
are given as input to the embedding enumeration function
in the first superstep. The outlier trees are split into multiple
split candidate trees, one per worker, by a split function. The

goal of the split function is to produce splits of equal cost.
Each split candidate tree is sent to a different worker. Workers
process the split candidate trees in the second superstep. The
algorithm gives the received splits as input to the embedding
enumeration function, which returns additional embeddings
matching the query graph.

After evaluating different values of κ, we found that the
value κ = 0.1% works well across different graphs and queries.
We conducted sensitivity analysis on a variety of datasets
and queries and noted that the query execution time is not
very sensitive to moderate variations of this parameter. This
is because the execution time in skewed graphs is typically
dominated by very few outliers.

We now discuss the function we use to estimate the cost
of a tree, and therefore to find outliers, and the algorithm
we use to split trees.

Cost estimation. A precise estimation of the cost of the
embedding enumeration subtask depends on the specifics
of the algorithm at hand. For example, different versions
of TurboISO use different optimizations match cross-edges,
which may sometimes avoid enumerating some combinations
of embeddings [22]. Other algorithms do not immediately
enumerate all the partial embeddings in the candidate tree [4].
QFrag does not require a very precise cost estimation, since
it only needs to discriminate heavy trees from the rest. There-
fore, its cost function is simply a heuristic approximating the
number of different embeddings that a given candidate tree
can generate.

A candidate tree CT (r) associates a domain to each query
vertex except the root r. Let Dr be the singleton domain
containing only r. Let Dl be a leaf domain. We estimate the
cost of Dl as

c(Dl) = |Dl|.
The cost of an internal node D is the product of the costs

of its children times the size of the domain

c(D) = |D| ×
∏

D′∈Children(D)

c(D′).

Finally, we compute the cost of the candidate tree CT (r)
as the cost of its root

cost(CT (r)) = c(Dr). (1)

This metric is not entirely accurate but it is a good approx-
imation in many cases. Outlier detection does not require
an accurate cost function: it is sufficient to have a cost func-
tion that assigns a relatively higher weight to the trees that
require the longest enumeration time. Figure 6 shows the
correlation between this cost metric and the execution time
of the embedding enumeration function for each candi-
date tree of the LiveJournal graph (see Section 5) with an
unlabeled triangle query (Q5u). The cost function is able
to reliably identify the heaviest candidate trees, even if it
tends to be conservative and to underestimate the pruning
opportunities present in large trees.

Splitting. The split function partitions a candidate tree
into multiple split candidate trees and makes sure that there is
one split per worker. It selects one split domain D, partitions

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA M. Serafini et al.

0.0 0.2 0.4 0.6 0.8 1.0
Estimated cost - per tree 1e9

0

10000

20000

30000

40000

50000

60000

70000

E
nu

m
er

at
io

n
tim

e
(m

s)
 -

pe
r t

re
e

Figure 6: Correlation between estimated cost of a
candidate tree (as per Equation 1) and its enumera-
tion time for the LiveJournal graph with query Q5u
(unlabeled triangles). The cost function of Equation 1
is able to reliably identify the most expensive trees.

the vertices in D and in its children domains among the
splits, and copies all other domains that are not children of
D. In other words, QFrag splits the Cartesian product over
the domain of a single query vertex.

Given that the embedding enumeration function enu-
merates the Cartesian product of the domains in independent
branches of the candidate tree, splitting along any sufficiently
large domain (i.e., with at least one vertex per worker) yields
similarly sized splits. Thus, QFrag selects a level-one domain
(i.e., a child of the root domain) as split domain. More specif-
ically, QFrag selects the first domain in the matching order.
This is the first domain (after the root domain) to be visited
in the embedding enumeration phase, so splitting it in equal
parts gives the highest likelihood of splitting the load in a
balanced manner.

In order to split a domain D(uq), the system partitions
its elements across the newly created splits of the candidate
tree, and we say that uq is split. For instance, let a vertex
v′G ∈ CS(uq, vG) be assigned to a certain split. All children
candidate subregions CS(u′q, ∗) reachable through v′G are
also assigned to the same candidate tree split. At the end
of the splitting process, all other candidate subregions for
query vertices that have not been split are copied over to
every candidate tree split.

Referring to the example of Figure 3, QFrag produces two
splits s1 and s2, each with half of the candidate subregion
CS(q2, r). Therefore, s1 includes CS(q2, r) = {v1} and s2
includes CS(q2, r) = {v2}. Then, QFrag partitions candidate
subregions that are reachable from the split candidate sub-
region, so s1 also includes CS(q3, v1) and CS(q4, v1), which
are reachable from v1, whereas s2 includes CS(q3, v2) and
CS(q4, v2). Finally, all remaining candidate subregions are
copied to both splits s1 and s2.

This algorithm for splitting candidate trees has two cor-
rectness properties. First, the splitting algorithm does not

generate redundant embeddings: the embeddings in different
splits do not overlap. To see why this property holds, consider
an embedding e = 〈v1, . . . , vn〉 that is generated from the
original tree before the split and let i be the index of the split
domain. By construction, vertex vi of e can only be assigned
to a single split since its domain is partitioned, so e cannot
be generated from two different splits.

The second correctness property of the splitting algorithm
is that no embedding is lost. Consider again the embedding e
discussed previously. We know that its vertex vi is assigned to
a single split s. Consider now another vertex vj in e with j 6= i.
Let CSi and CSj be the candidate subregions containing
vertex vi and vj , respectively. If CSj is reachable from CSi,
then by construction CSj is assigned to the same split s as
vi. If CSj is not reachable from CSi, then CSj is will be
replicated on all splits, again by construction. In both cases,
an embedding containing both vertices vi and vj is generated
by running embedding enumeration on s.

Implementation. We implemented QFrag in Java on top of
Hadoop YARN and Apache Giraph. Our implementation does
not follow a “think like a vertex” approach: it uses Giraph
as a BSP execution engine. The two steps of Algorithm 1
correspond to synchronous supersteps according to the Bulk
Synchronous Parallel (BSP) model. QFrag’s inputs are the
data and query graphs, which are provided as HDFS paths.
Its output is the set of matches, which can be either printed
or written to HDFS. We plan to implement QFrag also as a
Spark library and to release it as open source.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of QFrag versus
alternative computation paradigms. Our aim is to discover
the limits of the systems and understand how they behave
under significant workloads.

We focus on the following research questions:

RQ1: What is the performance of QFrag compared to the
baselines in sequential execution;

RQ2: What is the performance of QFrag compared to the
baselines in distributed execution;

RQ3: What is the impact of using task fragmentation over
an embarrassingly parallel implementation.

5.1 Experimental Setup

Datasets. The input graphs are medium to large scale, as
shown in Table 1. Patent [17] contains citation edges between
US Patents between January 1963 and December 1999; the
label of a patent is the year when it was granted. YouTube [8]
lists crawled videos and their related videos posted from
February 2007 to July 2008. The label is a combination of a
video’s rating and length. Orkut and LiveJournal are social
networks from the KONECT archive, and are unlabeled.3

These two datasets have much higher skew in the degree

3
http://konect.uni-koblenz.de/networks/orkut-links,

http://konect.uni-koblenz.de/networks/soc-LiveJournal1

http://konect.uni-koblenz.de/networks/orkut-links
http://konect.uni-koblenz.de/networks/soc-LiveJournal1

QFrag: Distributed Graph Search via Subgraph Isomorphism SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

Table 1: Statistics for the graphs used for the evalua-
tion: number of vertices |V |, edges |E|, and labels |L|;
average µd, standard deviation σd, and coefficient of
variation CVd = σd/µd of the degree distribution.

Name |V | |E| |L| µd σd CVd

Patent 2.7mln 14mln 37 5.09 13.94 2.74

YouTube 4.6mln 44mln 108 9.58 27.30 2.85

Orkut 3.1mln 117mln 0 38.14 168.29 4.41

LiveJournal 4.8mln 43mln 0 8.84 54.22 6.13

a

b

c

a

b c d

e

a

b c

d

a

b c

a

b c

d

b

c d

a a

b c

d e f

Q1 Q2 Q3 Q4

Q5 Q6 Q7 Q8

a

b

c

d

Figure 7: Queries used in the evaluation. The queries
represent four different topologies: chains (Q1-Q2),
trees (Q3-Q4), cycles (Q5-Q6), and mixed (Q7-Q8).
We consider two variants of each query. In the la-
beled version, the label of each vertex is mapped,
in alphabetical order, to the most frequent labels
of each graph in decreasing order of frequency, i.e.,
‘a’ represent the most frequent label in the graph,
‘b’ the second most frequent, and so on. In the un-
labeled (structural) version, the query vertices are
unlabeled so any data vertex can match every query
vertex.

distribution (see the coefficient of variation CV in Table 1),
and are therefore more challenging for load balancing.

Queries. We generate queries for these datasets in a program-
matic fashion. We start with 8 template query topologies, as
shown in Figure 7. These queries are similar to ones already
used in the literature [23]. These topologies present a vari-
ety of chains, trees, cycles, and mixed ones, and are mostly
taken from the literature [2]. Some queries, such as Q5 and
Q6, have direct applications to network evolution models
and recommender systems [15, 24]. We consider two variants
for each query. In the labeled variant, we instantiate these
queries for each dataset by applying a label to each vertex
in the template. It assigns label ‘a’ in the query template to
the most frequent label in the given graph, label ‘b’ to the
second most frequent, and so on. In the unlabeled variant,

we use these queries as structural queries: the query vertices
can match any data vertex. We append the letter u to the
name of the queries in their unlabeled version, as in Q5u.

Two of our input datasets are labeled, while the other two
are unlabeled. We run both labeled and unlabeled queries on
the labeled graphs (Patent and YouTube), and only unlabeled
queries on the unlabeled graphs (Orkut and LiveJournal).

Environment. We run our experiments on a cluster of 10
servers. Each server has 2 Intel Xeon E5-2670@2.67GHz
CPUs with a total of 32 execution cores and 256GB of RAM.
The servers are connected with a dual 10 GbE network. We
configure Hadoop 2.6.0 so that each physical server contains
a single worker with 32 execution slots.

Baselines. We use four different systems as baselines:

Neo4j is a popular production-grade graph database.4 The
database is centralized and spawns a single thread per
query. We use Neo4j community version 2.3.2.

VF2 is a well-known algorithm for sub-graph isomorphism [10].
We use the implementation available in the C++ Boost
library.5 We did not use TurboISO as baseline because
its source code is not available.

TriAD is a state-of-the-art distributed shared-nothing RDF
engine implemented in C++ and MPI [16]. The system
is based on an asynchronous distributed join algorithm
which uses a partitioned locality-based index.

GraphFrames (GF) is the Apache Spark6 package that
extends Spark’s functionality to handle graph datasets
as native Spark DataFrames. GraphFrames7 provides a
high-level API for querying the graph, and transform the
queries in an optimized SparkSQL execution plan. There-
fore, it is based on executing distributed joins on top of
Spark. We use the latest available version of GraphFrames
available on GitHub as of May 20168 and run it on the
latest stable version of Spark (1.6.1).

For each system, we report the query response time, ex-
cluding loading the graph and any initial pre-processing and
indexing, and including the output phase.

5.2 Sequential Efficiency (RQ1)

In this first experiment we compare QFrag with the other
systems running sequentially. The goal of this experiment
is to quantify the overhead that might be present in QFrag,
compared to other solutions, including ones that are sequen-
tial (e.g., VF2) or other distributed solutions specifically
designed for graph search (e.g., TriAD). For this evaluation
we use labeled queries, because they can be executed by all
systems in sequential mode.

Figure 8 reports the running times of all 8 labeled test
queries for the labeled datasets on the systems running in

4
http://neo4j.com

5
http://www.boost.org/doc/libs/master/libs/graph/doc/vf2 sub graph

iso.html
6
http://spark.apache.org

7
http://graphframes.github.io

8
http://github.com/graphframes/graphframes/tree/

8a7f973422f0302496a0dfbc0dabbdc2db6af338

http://neo4j.com
http://www.boost.org/doc/libs/master/libs/graph/doc/vf2_sub_graph_iso.html
http://www.boost.org/doc/libs/master/libs/graph/doc/vf2_sub_graph_iso.html
http://spark.apache.org
http://graphframes.github.io
http://github.com/graphframes/graphframes/tree/8a7f973422f0302496a0dfbc0dabbdc2db6af338
http://github.com/graphframes/graphframes/tree/8a7f973422f0302496a0dfbc0dabbdc2db6af338

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA M. Serafini et al.

QFrag
Neo

4j
VF2

TriA
D GF

102
103
104
105
106
107

Ti
m

e
(m

s)

dataset = patent

QFrag
Neo

4j
VF2

TriA
D GF

102
103
104
105
106
107
108 dataset = youtube

Figure 8: Response time with labeled queries and se-
quential execution, in log scale. Each dot in the graph
represents one of the eight test queries in Figure 7.

patent youtube
Dataset

103

104

105

106

Ti
m

e
(m

s)

system
QFrag
GF

Figure 9: Response time of GraphFrames (320 pro-
cesses) vs. QFrag (1 process) using labeled queries.
Each dot represents one test query.

patent youtube
Dataset

101

102

103

104

105

Ti
m

e
(m

s)

system
QFrag
TriAD

Figure 10: Response time of TriAD (32 processes)
vs. QFrag (32 workers) using labeled queries. Each
dot represents one test query.

sequential mode. We plot the graph in log scale because
different systems have very different running times. Overall,
QFrag is one of the two best systems, together with TriAD,
and outperforms the other competitors by orders of mag-
nitude. QFrag outperforms TriAD for more complex, long
running queries, where gains are more significant in absolute
terms. For example, with Q8 QFrag is 3× and 16× faster
than TriAD on Patent and YouTube, respectively. VF2 does
not scale to larger graphs gracefully, and indeed, it is the
slowest system on YouTube. For complex queries such as Q8,
QFrag is 327× and 2088× faster on Patent and YouTube,
respectively. Neo4j offers reliable performance, even though
the response times are not lightning fast. Possibly, the focus
on non-functional aspects such as durability and persistence,
and the fact that it is a disk based system, put a lower bound
on the response times. For all queries QFrag is typically at
least one order of magnitude faster than Neo4j. GraphFrames
(GF) is one of the slowest system. While it scales pretty well,
as shown next, its additional overhead is too high to compete

patent youtube orkut livej

GF

TriAD

VF2

Neo4j

QFrag

0.50 0.50 0.00 0.00

0.50 0.50 0.00 0.00

0.50 0.50 0.00 0.00

0.50 0.50 0.00 0.00

0.88 0.88 0.50 0.50

0.0

0.2

0.4

0.6

0.8

1.0

Figure 11: Fraction of queries that each system is
able to successfully run for each dataset (in any
configuration). All systems are able to run labeled
queries, and while no other baseline is able to run
any unlabeled query, QFrag successfully runs half of
them. Note that Orkut and LiveJournal are unla-
beled graphs so we consider only unlabeled queries,
whereas in Patent and Youtube only half of the
queries we consider are unlabeled.

with other systems. QFrag is regularly faster than GF by
more than two orders of magnitude.

Overall, these results show that QFrag does not sacrifice
efficiency for scalability, rather it is competitive with cen-
tralized and highly optimized implementations. This is not
surprising given that QFrag implements TurboISO, a state
of the art sequential subgraph isomorphism algorithm.

5.3 Distributed Efficiency (RQ2)

The purpose of this second experiment is to compare QFrag to
other distributed solutions, namely, TriAD and GraphFrames.
Both these systems partition the input graph across the
worker machines, and rely on distributed joins to answer
graph search queries. QFrag takes a different approach: it
replicates the input graph on the workers, and uses graph
exploration to distribute the work. In other words, QFrag
distributes the computation, not the data.

Labeled queries. We first compare QFrag with Graph-
Frames, which is the system that is most similar to QFrag
in terms of technology. It is also an in-memory graph search
system built on top of Hadoop, and like QFrag, it lets work-
ers coordinate via synchronized communication steps. We
compare GraphFrames running with a parallelism of 320 (the
maximum possible on our cluster) to the sequential version
of QFrag (Figure 9). GraphFrames shows good scalability
compared to its running time in the sequential mode, re-
ported in Figure 8. The improvement is typically around one
order of magnitude. However, this is still not sufficient to
outperform the sequential execution of QFrag, which is still
more than one order of magnitude faster across all queries.
Therefore, GraphFrames shows a high COST (configuration
to outperform single thread) [27]. Conversely, QFrag does
not present this problem.

QFrag: Distributed Graph Search via Subgraph Isomorphism SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

0
20
40
60
80

100
120
140

S
pe

ed
up

dataset = patent dataset = youtube dataset = orkut

query = q5u

dataset = livej

32 64 12
8

19
2

25
6

32
0

Parallelism

0
20
40
60
80

100
120
140

S
pe

ed
up

32 64 12
8

19
2

25
6

32
0

Parallelism
32 64 12

8
19

2
25

6
32

0

Parallelism
32 64 12

8
19

2
25

6
32

0

Parallelism

query = q7u
policy

Embarrassingly Parallel
Task Fragmentation

Figure 12: Speedup of different distribution policies for QFrag over sequential execution. For datasets with low
skew (Patent and YouTube), embarrassingly parallel is as good as task fragmentation. However, for datasets
with high skew (Orkut and LiveJournal), task fragmentation is significantly better than embarrassingly par-
allel.

32 64 12
8

19
2

25
6

32
0

Parallelism

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

G
ai

n

dataset = patent

32 64 12
8

19
2

25
6

32
0

Parallelism

dataset = youtube

32 64 12
8

19
2

25
6

32
0

Parallelism

dataset = orkut

32 64 12
8

19
2

25
6

32
0

Parallelism

dataset = livej

query
q5u
q6u
q7u

Figure 13: Speedup of task fragmentation over embarrassingly parallel for the same configuration of dataset,
query, and processes. For datasets with low skew (Patent and YouTube) there is no difference, while for
datasets with high skew (Orkut and LiveJournal) task fragmentation is up to 4 times faster than embarrass-
ingly parallel. Note that QFrag can process query Q6u for Orkut and LiveJournal only with task fragmentation,
so it is impossible to compute gains.

Next, we compare QFrag to TriAD. The two systems use
very different technology stacks: TriAD is implemented in
C++ and runs on top of a tailored, asynchronous MPI plat-
form, whereas QFrag is written in Java and runs on top of
a Hadoop-based BSP system. Coordination in a BSP sys-
tem is much more expensive than in MPI because every
message exchange requires blocking all workers and waiting
until all workers have finished receiving their messages. The
purpose of this experiment is to show that, despite these
additional constraints, QFrag has performance in line with
TriAD, which in turn has been shown to clearly outperform
other Hadoop-based solutions [16]. TriAD is not designed to
scale to more than 32 processes, so we run both TriAD and
QFrag with 32 processes to compare their performance. The
results, reported in Figure 10, show a trend similar to the
comparison with sequential execution. TriAD outperforms
QFrag on the smaller dataset and simpler queries. The run-
ning times for QFrag are all very similar, due to a constant
overhead of running on top of Hadoop. In relative terms,
TriAD can be more than ten times faster, but in absolute
terms, the differences are in the order of few seconds, which
is not a very significant difference even in case of interactive

analytics. For more complex queries with a larger number of
query vertices and larger intermediate results, such as Q8,
QFrag is faster than TriAD. This difference is particularly
evident on larger datasets such as YouTube, where QFrag is
more than five times faster than TriAD.

QFrag compares favorably to GraphFrames and TriAD
because the latter distribute the input graph. They can store
larger graphs, but they must also shuffle a larger fraction of
an already large intermediate state across workers.

Unlabeled (structural) queries. Surprisingly, all our base-
lines are unable to run any of the unlabeled queries on our
datasets, and crash. These results are summarized in Fig-
ure 11, which shows the fraction of queries each system is
able to run on different datasets. Most systems are able to
run unlabeled queries on smaller test datasets, but as the
scale of the task grows all the baselines fail.

QFrag is able to run most queries on most datasets. How-
ever, Q8u presents a challenge even for our system. The
system does not crash, but it takes more than 12 hours to
complete, so we abort it. This result is a reminder that even
though QFrag is a substantial improvement over the state-
of-the-art, the task is still NP-hard and there will always

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA M. Serafini et al.

be limits to the complexity of queries we can hope to run.
These unlabeled queries have a high degree of symmetry,
so they could benefit from techniques for exploiting symme-
try [19, 29]. Extending QFrag to these techniques is left as
future work.

Overall, these results show that QFrag consistently out-
performs other systems in processing more complex queries
on larger dataset.

5.4 Parallelization Policies (RQ3)

The QFrag framework allows to transparently scale a cen-
tralized graph exploration implementation to several servers,
by using different underlying work distribution policies. We
now compare the two policies, embarrassingly parallel and
task fragmentation, using from 32 to 320 workers. We report
results on all datasets for three unlabeled queries that can
run on all the range of workers: Q5u, Q6u and Q7u. As dis-
cussed previously, only QFrag is able to run these queries
on the datasets we consider. In order to isolate the overhead
of writing to HFDS, in these experiments QFrag does not
output the embeddings.

Figure 12 reports the speedup of the different variants of
QFrag over the sequential execution. The speedup when using
embarrassingly parallel with 128 workers is 4 times higher
than the one using 32 workers. When using more workers,
the gains are still present but less significant. The scalability
gain with embarrassingly parallel distribution is in 25-65%
range for Patent, and 34-83% for YouTube. This decrease
in efficiency is due to the presence of skew in the workload,
which hinders further parallelization.

The high efficiency of local computation in QFrag makes
the cost of coordination comparatively higher, especially at
larger scale, so the relative gains of increasing scalability
become lower as the size of the cluster increases. As observed
also by McSherry et al. [27], scalability is easier to achieve
in systems with worse baseline performance because there
is more margin to gain. For example, GraphFrames scales
much better than QFrag but does not manage to achieve the
same overall performance.

The task fragmentation policy is able to mitigate skew
significantly, as already shown in Figure 5. The benefits of
using task fragmentation depend on the graph and query
under consideration. In fact, sharing load also entails costs in
terms of message serialization and of coordination with other
workers. On the two low-skew graphs (Patent and YouTube),
task fragmentation does not present significant gains over
embarrassingly parallel, and its overhead makes the system
slightly slower. Conversely, on the high-skew graphs (Orkut
and LiveJournal), task fragmentation shows a much better
performance over embarrassingly parallel.

To visualize the difference between the two policies more
clearly, Figure 13 shows the speedup of task fragmentation
over embarrassingly parallel for each configuration. While
for Patent and YouTube there is basically no speedup, task
fragmentation is up to 4× faster than embarrassingly par-
allel on Orkut and YouTube. The difference becomes more

significant with higher parallelism, which indicates that task
fragmentation scales better than embarrassingly parallel, as
expected. The architecture of QFrag, which distributes load
and not data, results in very efficient local graph exploration
even with larger graphs and with analytical queries.

Task fragmentation shows consistent better results overall,
with low overhead when the workload is not skewed, and
high gains when it is.

6 RELATED WORK

There is has been a large volume of work on distributed
graph search. QFrag differs from existing work because of
three key design choices: (i) running on BSP systems, (ii)
replicating the input graph at each worker, and (iii) running
independent parallel instances of a sequential graph matching
algorithm (with load balancing). Previous work looked at
different points in the design space, as we now discuss.

RDF search systems. The Resource Description Frame-
work (RDF) format is often used for web metadata and for
general knowledge management. It builds a graph among en-
tities (i.e., vertices) by expressing edges as subject-predicate-
object triplets. Several RDF databases allow storing and
querying RDF graphs. We restrict our discussion to state-of-
the-art distributed RDF systems.

TriAD partitions the graph into multiple machines, keep-
ing copies of each tuple for performance. It also uses graph
summarization to avoid looking at parts of the graph that
cannot contain results. Query plans combine three opera-
tions: Distributed Index Scan, Distributed Merge Join, and
Distributed Hash Join. Our evaluation shows that QFrag is
slower than TriAD in queries that take milliseconds because
it has a constant latency of 2-3 seconds, which is acceptable
for analytic workloads. Such a small gap is remarkable since
TriAD is implemented in C++ using efficient asynchronous
MPI communication, whereas QFrag is implemented in Java
and runs on top of BSP systems, so it must communicate
using expensive synchronous supersteps with global barriers.
The advantage of using QFrag increases with the complexity
of the query, making QFrag the only system able to deal with
very complex queries. These queries make the advantage of
distributing computation, instead of data, more evident.

AdPart is a more recent RDF search system that, like
TriAD, distributes the input graph among several servers [20].
It is implemented using C++ and MPI. Unlike TriAD, which
uses a static partitioning of the input graph, it incrementally
redistributes the input graph based on access frequency. The
system targets queries whose running time ranges from a few
seconds to milliseconds, and shows that it can improve over
TriAD for these queries.

Dream [18] is an RDF search system that replicates the
graph at all servers. Contrary to QFrag, Dream partitions
the query graph into a number of sub-graphs, each of which
is handled by a separate server. Dream then performs a form
of distributed joins of the intermediate results. The goal of
query partitioning is to find the best number of servers to
execute a query. The maximum number of servers Dream

QFrag: Distributed Graph Search via Subgraph Isomorphism SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

can use for a given query is bounded by the number of the
query sub-graphs, which in turn is bounded by the size of the
query graph. Dream also reduces the amount of information
that must be exchanged to execute distributed joins: since
each server has a full copy of the database, servers can simply
exchange metadata instead of actual data.

Trinity.RDF [1] is a distributed graph search system that
utilizes an independent key-value store to access the graph. It
represents the graph as a sequence of adjacency lists, one per
vertex. Each adjacency list is stored as a key-value pair in
the Trinity store, where the key is the vertex id and the value
is the adjacency list [35]. Therefore Trinity.RDF uses the
standard approach of distributing the graph across multiple
machines. Trinity.RDF uses a centralized query proxy to com-
pute a query plan based on graph statistics or information
from indexes. The query plan can either expand a sub-query
or combine two sub-queries and thus can generate disjoint
exploration sub-queries. The exploration is edge based. The
design necessitates a centralized last phase to join all the
sub-queries, and cross-edges, thus while their solution has
a smaller intermediate state compared to distributed joins,
it still is not as optimized as pure subgraph isomorphism.
The purpose of query planning in Trinity.RDF is to mini-
mize communication cost rather than the computational cost.
TriAD, the baseline that we use in our evaluation, has been
shown to typically outperform Trinity.RDF [16].

Graph search on BSP-based systems. Systems such as
H-RDF-3X [21] and SHARD [31] are built on top of Hadoop,
like QFrag. They partition the data on HDFS and use MapRe-
duce to coordinate among workers. Query processing is per-
formed using joins, each corresponding to one map-reduce
iteration. Unlike QFrag, these systems are disk-based, and
have been shown to have substantially inferior performance
compared to TriAD [16], which is one of the baselines we use
in the evaluation.

Other alternatives to QFrag in the BSP world are algo-
rithms for distributed subgraph listing, which find unlabeled
patterns using joins and distribute the data graph among
multiple servers [23, 36]. QFrag supports also labeled queries,
beyond unlabeled ones.

Load balancing. Because of their rigid computational model,
BSP systems pose unique load balancing challenges compared
to other types of data processing systems, such as for example
stream processing systems [6, 9, 30, 33, 38, 39]. Prior work
on load balancing and straggler mitigation in BSP systems
considers tasks as pre-defined black-boxes whose function-
ality cannot be modified, and focuses on task scheduling
techniques [3, 11, 42].

Task fragmentation also addresses the straggler problem
but it takes a different approach: it breaks tasks into multiple
sub-tasks and balances load by shuffling intermediate data
between these sub-tasks.

A well-known scheduling technique to balance load among
a set of workers, especially in multi-threaded settings, is work
stealing (see for example [5]). In a distributed setting, work
stealing requires workers to pull work from others whenever

they are idle. This approach is difficult to implement on top
of BSP systems. Every time a fast worker wants to pull some
work, it needs to block and wait for the end of the current
superstep. Slower workers need to proactively interrupt their
work before they can be even contacted by the fast worker,
terminate the superstep, and check if there is need to redis-
tribute the work. This requires additional supersteps, may
frequently and unnecessarily interrupt computation for all
workers, and can result into the same sort of load balancing
problems we are trying to solve. In addition, BSP systems
are designed for push-style communication, where senders
proactively stop computation and send data to others. Exe-
cuting a pull in a BSP system requires two supersteps: in the
first superstep, a worker contacts other workers from which
it wants to pull; in the second superstep it receives messages
from the contacted workers.

Task fragmentation uses a push-based approach where
workers execute a balanced amount of work and push the
rest to the other workers. This choice makes it a technique
that can be easily used on top of any BSP system.

7 CONCLUSION

Graph search is a well-studied problem in the literature.
Existing work on systems for distributed graph search has
mainly focused on serving queries with high selectivity on
large graphs. However, the graph search problem is NP-
hard, so running analytical queries even on small graphs can
quickly become computationally intensive. For this reason,
there exists a rich literature on sequential algorithms for
subgraph isomorphism that are designed to optimize the
graph exploration, which is the real bottleneck. In addition,
a large majority of graph datasets can be represented in an
efficient binary form that can fit in the memory of a single
machine, especially given the increased availability of cheap
and large main memory.

Based on these observations, we have proposed QFrag,
a system for distributed graph search that is based on two
fundamental design choices: replicating the input graph at ev-
ery worker, and parallelizing efficient subgraph isomorphism
algorithms. QFrag is able to run complex analytical queries
that no other system can run. To do so, QFrag employs
task fragmentation, a load balancing technique designed to
deal with deceitfully parallel problems and stragglers in BSP
systems. We show that task fragmentation improves over a
näıve strategy by up to four times.

Overall, we believe that the design principles introduced
by QFrag open up many interesting research questions in
terms of how to optimize load balancing in BSP systems, and
QFrag represents just a first step in this direction.

ACKNOWLEDGEMENTS

The authors would like to thank Rade Stanojevic for his help
with previous draft of this paper.

SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA M. Serafini et al.

REFERENCES
[1] 2013. A Distributed Graph Engine for Web Scale RDF Data.

http://research.microsoft.com/apps/pubs/default.aspx?id=
183717

[2] Foto N. Afrati, Dimitris Fotakis, and Jeffrey D Ullman. 2013.

Enumerating subgraph instances using map-reduce. In IEEE

International Conference on Data Engineering (ICDE).

[3] Ganesh Ananthanarayanan, Srikanth Kandula, Albert G
Greenberg, Ion Stoica, Yi Lu, Bikas Saha, and Edward

Harris. 2010. Reining in the outliers in Map-Reduce clusters
using Mantri.. In USENIX Symposium on Operating

Systems Design and Implementation (OSDI).

[4] Fei Bi, Lijun Chang, Xuemin Lin, Lin Quin, and Wenjie

Zhang. 2016. Efficient subgraph matching by postponing
cartesian products. In ACM SIGMOD International

Conference on Management of Data (SIGMOD).

[5] Robert D Blumofe and Charles E Leiserson. 1999.
Scheduling multithreaded computations by work stealing.

Journal of the ACM (JACM) 46, 5 (1999), 720–748.

[6] Raul Castro Fernandez, Matteo Migliavacca, Evangelia

Kalyvianaki, and Peter Pietzuch. 2013. Integrating scale out
and fault tolerance in stream processing using operator state

management. In ACM SIGMOD international conference on
Management of data (SIGMOD).

[7] Deepayan Chakrabarti and Christos Faloutsos. 2006. Graph
mining: Laws, generators, and algorithms. ACM Computing
Surveys (CSUR) 38, 1 (2006), 2.

[8] Xu Cheng, Cameron Dale, and Jiangchuan Liu. 2008.
Dataset for “Statistics and social network of YouTube

videos”. http://netsg.cs.sfu.ca/youtubedata/. (2008).

[9] Mitch Cherniack, Hari Balakrishnan, Magdalena Balazinska,
Donald Carney, Ugur Cetintemel, Ying Xing, and Stanley B
Zdonik. 2003. Scalable distributed stream processing. In

CIDR.

[10] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and
Mario Vento. 2004. A (sub)graph isomorphism algorithm for

matching large graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence 26, 10 (2004), 1367–1372.

[11] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce:
Simplified data processing on large clusters. Commun. ACM
51, 1 (2008).

[12] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo
Wang, Michael Stonebraker, Ahmed K Elmagarmid, Ihab F

Ilyas, Samuel Madden, Mourad Ouzzani, and Nan Tang.

2017. The Data Civilizer system. In CIDR.

[13] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos.
1999. On power-law relationships of the internet topology. In

ACM SIGCOMM Computer Communication Review,
Vol. 29. 251–262.

[14] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005. LUBM:
A benchmark for OWL knowledge base systems. Web

Semantics 3, 2-3 (Oct. 2005), 158–182.

[15] Pankaj Gupta, Venu Satuluri, Ajeet Grewal, Siva
Gurumurthy, Volodymyr Zhabiuk, Quannan Li, and Jimmy
Lin. 2014. Real-time twitter recommendation: Online motif
detection in large dynamic graphs. Proceedings of the VLDB

Endowment 7, 13 (2014), 1379–1380.

[16] Sairam Gurajada, Stephan Seufert, Iris Miliaraki, and

Martin Theobald. 2014. TriAD: A distributed
shared-nothing RDF engine based on asynchronous message

passing. In ACM SIGMOD International Conference on
Management of Data (SIGMOD).

[17] Hall B. H., A. B. Jaffe, and M. Trajtenberg. 2001. The

NBER patent citation data file: Lessons, insights and

methodological tools. http://www.nber.org/patents/. (2001).

[18] Mohammad Hammoud, Dania Abed Rabbou, Reza Nouri,

Seyed-Mehdi-Reza Beheshti, and Sherif Sakr. 2015. DREAM:
distributed RDF engine with adaptive query planner and

minimal communication. Proceedings of the VLDB

Endowment 8, 6 (2015), 654–665.

[19] Wook-Shin Han, Jinsoo Lee, and Jeong-Hoon Lee. 2013.
TurboISO: Towards ultrafast and robust subgraph

isomorphism search in large graph databases. In ACM

SIGMOD International Conference on Management of Data
(SIGMOD). 337–348.

[20] Razen Harbi, Ibrahim Abdelaziz, Panos Kalnis, Nikos

Mamoulis, Yasser Ebrahim, and Majed Sahli. 2016.
Accelerating SPARQL queries by exploiting hash-based

locality and adaptive partitioning. The VLDB Journal 25, 3
(2016), 355–380.

[21] Jiewen Huang, Daniel J Abadi, and Kun Ren. 2011. Scalable
SPARQL querying of large RDF graphs. Proceedings of the

VLDB Endowment 4, 11 (2011), 1123–1134.

[22] Jinha Kim, Hyungyu Shin, Wook-Shin Han, Sungpack Hong,
and Hassan Chafi. 2015. Taming subgraph isomorphism for

RDF query processing. Proceedings of the VLDB

Endowment 8, 11 (2015).

[23] Longbin Lai, Lu Qin, Xuemin Lin, Ying Zhang, Lijun Chang,
and Shiyu Yang. 2016. Scalable distributed subgraph

enumeration. Proceedings of the VLDB Endowment 10, 3

(2016), 217–228.

[24] Jure Leskovec, Lars Backstrom, Ravi Kumar, and Andrew

Tomkins. 2008. Microscopic evolution of social networks. In

ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD).

[25] Ruslan Mavlyutov, Carlo Curino, Boris Asipov, and Philippe

Cudre-Mauroux. 2017. Dependency-driven analytics: A

compass for uncharted data oceans. In Conference on
Innovative Data Systems Research (CIDR).

[26] Brian McBride. 2002. Jena: A semantic web toolkit. IEEE

Internet computing 6, 6 (2002), 55.

[27] Frank McSherry, Michael Isard, and Derek G. Murray. 2015.
Scalability! But at what COST. In USENIX Workshop on

Hot Topics in Operating Systems (HotOS).

[28] Thomas Neumann and Gerhard Weikum. 2010. The
RDF-3X engine for scalable management of RDF data. The

VLDB Journal 19, 1 (2010), 91–113.

[29] Xuguan Ren and Junhu Wang. 2015. Exploiting vertex

relationships in speeding up subgraph isomorphism over
large graphs. Proceedings of the VLDB Endowment 8, 5

(2015), 617–628.

[30] Nicoló Rivetti, Leonardo Querzoni, Emmanuelle Anceaume,
Yann Busnel, and Bruno Sericola. 2015. Efficient key
grouping for near-optimal load balancing in stream

processing systems. In Proceedings of the 9th ACM
International Conference on Distributed Event-Based
Systems. ACM, 80–91.

[31] Kurt Rohloff and Richard E Schantz. 2011. Clause-iteration
with MapReduce to scalably query datagraphs in the
SHARD graph-store. In International workshop on

http://research.microsoft.com/apps/pubs/default.aspx?id=183717
http://research.microsoft.com/apps/pubs/default.aspx?id=183717
http://netsg.cs.sfu.ca/youtubedata/
http://www.nber.org/patents/

QFrag: Distributed Graph Search via Subgraph Isomorphism SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA

Data-intensive distributed computing.

[32] Antony Rowstron, Dushyanth Narayanan, Austin Donnelly,
Greg O’Shea, and Andrew Douglas. 2012. Nobody ever got

fired for using Hadoop on a cluster. In International

Workshop on Hot Topics in Cloud Data Processing.

[33] Mehul A Shah, Joseph M Hellerstein, Sirish Chandrasekaran,
and Michael J Franklin. 2003. Flux: An adaptive

partitioning operator for continuous query systems. In Data
Engineering, 2003. Proceedings. 19th International

Conference on. IEEE, 25–36.

[34] Ron Shamir and Dekel Tsur. 1997. Faster subtree

isomorphism. In Israeli Symposium on Theory of Computing
and Systems.

[35] Bin Shao, Haixun Wang, and Yatao Li. 2013. Trinity: A

distributed graph engine on a memory cloud. In ACM
SIGMOD International Conference on Management of Data

(SIGMOD).

[36] Yingxia Shao, Bin Cui, Lei Chen, Lin Ma, Junjie Yao, and

Ning Xu. 2014. Parallel subgraph listing in a large-scale
graph. In ACM SIGMOD International Conference on

Management of Data (SIGMOD).

[37] Zhao Sun, Hongzhi Wang, Bin Shao, Haixun Wang, and

Jianzhong Li. 2012. Efficient Subgraph Matching on Billion

Node Graphs. Proceedings of the VLDB Endowment (2012).

[38] Muhammad Anis Uddin Nasir, Gianmarco De Francisci
Morales, David Garcia-Soriano, Nicolas Kourtellis, and

Marco Serafini. 2015. The Power of Both Choices: Practical

Load Balancing for Distributed Stream Processing Engines.
In International Conference on Data Engineering (IDCE).

[39] Muhammad Anis Uddin Nasir, Gianmarco De Francisci

Morales, Nicolas Kourtellis, and Marco Serafini. 2016. When
Two Choices Are not Enough: Balancing at Scale in

Distributed Stream Processing. In International Conference

on Data Engineering (ICDE).

[40] Leslie G Valiant. 1990. A bridging model for parallel
computation. Commun. ACM 33, 8 (1990).

[41] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin,

Scott Shenker, and Ion Stoica. 2010. Spark: Cluster

computing with working sets. In USENIX Conference on
Hot Topics in Cloud Computing (HotCloud).

[42] Matei Zaharia, Andy Konwinski, Anthony D Joseph,

Randy H Katz, and Ion Stoica. 2008. Improving MapReduce
performance in heterogeneous environments.. In USENIX

Symposium on Operating Systems Design and

Implementation.

	Abstract
	1 Introduction
	2 Task Fragmentation
	3 Subgraph Isomorphism
	3.1 Problem Definition
	3.2 Tree-Based Algorithms

	4 QFRAG
	4.1 Embarrassingly Parallel
	4.2 Task Fragmentation

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Sequential Efficiency (RQ1)
	5.3 Distributed Efficiency (RQ2)
	5.4 Parallelization Policies (RQ3)

	6 Related Work
	7 Conclusion
	References

