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Abstract—Video streaming services are migrating to cloud
environments for the economic expense with good scalability.
However, cloud providers offer flexible resource configurations,
e.g., on-demand, reserved and spot instances, with significant
different pricing policies, of which one single configuration is
suboptimal for cloud video streaming services. In this paper, we
propose hybrid configuration schemes of cloud video streaming
services to reduce the cost. To achieve this goal, we first introduce
a lightweight prediction algorithm to predict the future video
traffic. With the predicted video traffic, we then give the Hybrid-
R hybrid configuration scheme by configuring both on-demand
and reserved instances, and the Hybrid-RS hybrid configuration
scheme by further configuring spot instances. Our evaluations
using traces from real video service providers show that our
configuration schemes can reduce cost by at least 20% compared
to the unoptimized ones with negligible overhead.

I. INTRODUCTION

In the past few years, the scale of video streaming services
is dramatically increased [1, 2], due to the popularity of both
internet services, e.g. Youtube, and online education services,
e.g. MOOCs. While the scale is increased in a long term
(month by month) and the user requests varies in a short
time (hour by hour), it is an economical way to migrate video
streaming services to the cloud, leveraging the benefit of the
flexible on-demand (pay-as-you-go) cost. A number of video
service providers have gained benefits from this trend, e.g.,
Netflix has started to transfer its storage services to Elastic
Compute Cloud (EC2) of Amazon [3].

While video services can have a lower cost with the on-
demand configurations in the cloud, there are still margins
to better use the flexible configurations offered by cloud
platforms. For instance, Amazon EC2 provides three kinds
of virtual machine (VM) instances, i.e., on-demand, reserved
and spot instances, with different pricing policies [4]. The on-
demand instance provides traditional pay-as-you-go pricing
policy. The reserve instance offers a discount with proper
mount of upfront fee. And the spot instance offers the lowest
price, but no guarantee on available resource. These flexible
pricing policies bring opportunities for reducing the instance
renting cost of video streaming services when properly con-
figured.

To investigate the benefits from the flexible pricing policies,
we study the access pattern of video traffic, and thereby
evaluate the cost of the instance configuration offered by EC2.
By studying both results from research paper [1] and statis-
tical data published on mainstream VoD (Video on Demand)
websites [5, 6], we observe that the video traffic varies in
each hour of a day but repeats a similar pattern on each day.
Figure 1 shows the averaged video traffic (in terms of the

Fig. 1: Average video traffic in each hour of one day

number of video tasks) in each hour of one day, which is
extracted from the log traces of XuetangX [5], a Coursera-
like online education platform, and VoD website of China
Telecom [1], a Youtube-like video website. The traffic basically
increases from 6 a.m. to 8 p.m. and thereafter decreases to the
next morning, which conforms with the user habit of work and
after-work hours. In the figure, the bottom and top of every
vertical virgule represent the minimize and maximum value of
the average task number of the time region and the rectangle
in the middle represents 90% medium value of them. Since
the video traffic changes over time, reserved instances can not
be simply employed to bring down the cost.

To illustrate the renting cost waste of the improper configu-
rations of VM instances, we calculate the cost of one day using
each pricing policy offered by EC2. Table I lists the averaged
one-day cost (as the last column) of each pricing policy,
when serving the video traffic shown in Figure 1. To ensure
QoS (Quality of Service), each VM instance is limited to
serve at most 20 video tasks. Expense of on-demand instance
configurations is the accumulated value of the dynamic each-
hour fees. Expenses of reserved instance configurations are
cut down by nearly half. The cost comes from two parts: the
upfront fee and the unit price, which respectively have the
averaged value shown in the middle two columns of Table I.

TABLE I: Average one-day cost using each pricing policy of EC2

Instance Type Upfront($/d) Unit Price($/h) Cost($)
On-Demand 0 0.853 298.283

R
es

er
ve

d Light-R 1.764 0.369 148.275
Medium-R 4.090 0.227 148.307

High-R 4.986 0.155 165.414
Spot 0 0.081 29.832

Hybrid-R / / 125.637



The cost benefit is because of the discount of the unit price,
though the upfront fee has been pre-charged. Expense of spot
instance configurations is significantly reduced, but resource
is not steady and thus the service is not guaranteed. Sole spot
instance configuration is not practical.

Hybrid configuration is the core idea of our work. It
employs different types of instances to coordinate with the
video fluctuation, to get the optimal renting strategy and lower
rental fees. By utilizing higher-reserved instances to serve the
basic streaming tasks in idle hours and complementing lighter-
reserved instances to manage the massive requirements in peak
hours, the former ones provide a lower unit price for the high
utilization ratio, and the later ones have less upfront fee that
can save money when there are no so much tasks to serve.
In this case, we choose 4 high-reserved instances, 8 medium-
reserved instances and 7 light-reserved instances to serve the
tasks and get more than 20$ cost saving instantly, which could
be enlarged to tons of millions dollars in commercial systems.
As video traffic has a regular variation cycle, it is possible to
give a long-term prediction and apply it into a dynamic on-line
resource configuration scheme for the video streaming services
in cloud.

Our contributions are summarized as follows:

1) We observe that hybrid configuration of instance types
leads to lower renting cost of video streaming services
in cloud platform, due to fluctuation of video traffic. By
studying the correlation of video and user access infor-
mation, we introduce a lightweight prediction algorithm.

2) We propose the Hyrbid-R hybrid configuration to opti-
mize the instance usages among on-demand and high-,
medium- and light-reserved instances, based on the pre-
dicted video traffic. We further explore the incorporation
of spot instances to further lower the cost, and propose
the Hybrid-RS hybrid configuration.

3) We evaluate our algorithms using datasets from real-
word on-line education and entertainment video services.
Results show that our algorithms can save renting cost by
at least 20%.

II. BACKGROUND

A. Pricing Policies in EC2

The total renting cost of the VoD system in cloud platform
is mainly influenced by two pricing factors: Storage facilities
and Instance types. Elastic Block Store (EBS) is one of the
most frequently used storage facilities on the EC2 platform.
EBS provides persistent block level storage volumes for coop-
erating with EC2 instances in the cloud. It can be mounted on
to the instances and accessed as the block devices expediently
with extra rental fees by time, space and I/O volume. To
guarantee the user accessing of global video database, we
assume using EBS as the storage service in our configuration
scheme. There are three types of VM instances in EC2:

On-Demand Instances allow users to pay for compute ca-
pacity by the hour with no long-term commitments. It may take
2-5 minutes delay if the users apply the on-demand instances
temporarily, but the configuration scheme can calculate the
instances requirements and apply them in advance, so the on-
demand instances are suitable for video streaming tasks.

Reserved Instances provide the users with a significant
discount and capacity reservation compared to on-demand
ones. There are three payment options, light, medium and
high-reserved instances, they have the incrementally upfront
fees and decreasingly hourly charging discount, the light and
medium-reserved instances are only charged by using hours
and the high-reserved ones are charged through the whole
reserved term. The reserved instances are most suitable for
the video streaming services and are mainly used in our
configuration scheme.

Spot Instances enable the users to bid for unused EC2
capacity. Instances are charged by the spot price, if the users’
maximum bid prices exceed the current spot price, their
requests are fulfilled and the instances will run until either
the users choose to terminate them or the spot price increases
above their bid prices. The unit price of spot instances is much
lower than other instances, but when the spot price rises higher
than the bid price, the resource will be taken back quite soon.
So we introduce task migration strategy in our scheme to make
use of spot instances for further cost conserving.

B. VoD in Cloud

To better understand the cloud-based VoD infrastructure,
we give a presumed architecture picture to illustrate the
relationships between each part of the system. As shown in
Figure 2, the main parts of the system are the user and Web
Server, the Task Scheduler, Instances and EBS.

When a user launches a video playing requirement, a
streaming task is generated by the Web Server and sent
to the Task Scheduler, who will decide which Instance to
distribute the task in according to the video contents and other
features like the user IP address region and the server clusters
bandwidth conditions. The Instance will read the required
video program from the global video database storage EBS and
transmit to the user. To serve the users from different regions,
there are multiple replica of such systems across different
server locations.

The core idea of our work is to give a optimal configuration
scheme of the different types of Instances, according to the
video traffic variations, with the lowest renting cost of the
VoD system on the cloud platform. The first step of the work
is utilizing the basic on-demand and reserved instances with
the predicted video traffic to propose an initial instance renting
plan, like C1 in the figure; The second step is C2, which
introduces the low-cost spot instances into the configuration
to provide an advanced cost-efficient scheme.

Fig. 2: VoD system architecture in cloud platform



C. Problem Formalization

The cost-effective resource configuration problem for cloud
video streaming services can be defined as follows. Notations
used in this paper are summarized in Table II.

Input:

• A series of streaming tasks whose hourly volume V =
{vk | k = 1, 2, 3, ...} is predicted for a long term (a year
in our case) by their historical log traces;

• The upfront fees p̃L, p̃M and p̃H , hourly unit prices pO
pL, pM , pH and pS of the On-demand, Light, Medium
and High-reserved and Spot instance of cloud platform;

• The maximum task number w that a virtual machine can
process simultaneously with the Quality of Service (QoS,
95% streaming tasks can be served with no more than 5%
delay of their playing time in our case) guarantee;

• The upfront and unit price p̃Y and pY of the EBS space;

Output:

• The total renting cost C of the streaming tasks V ;
• The numbers of the applied On-demand, Light, Medium,

High-reserved and Spot VM instances, nO, nL, nM , nH
and nS , that give the minimum C;

C can be calculated as follows. CX and TX are the rental
fee and running time which is also the charging time of the
X-type instances, CY is the cost on EBS. Instance types set I
= {X | X = O, L, M , H , S}.

C = CY +
∑
X∈I

CX

= (pY ∗ TY + p̃Y ) ∗ nY +
∑
X∈I

(pX ∗ TX + p̃X) ∗ nX
(1)

The optimal configuration scheme is: N = {nX | X ∈ I}.
In the equation, TX can be calculated by nX and the video
traffic volume V , and it is accurate to hours, the same as V ,
because the VM instances are charged by the time unit of
hours. Every other week, we will collect the newly generated
task information and bring back into the historical data to get
a more accurate prediction for the next week.

TABLE II: Notations used in this paper

Notation Description
vk Video traffic of the kth hour of a cycle.
V V = {vk | k = 1, 2, 3, ...}.
w VM Instance capacity of video streaming tasks.
p̃X Upfront fee of the X instance.
pX Unit price of the X instance.
p̃Y Upfront fee of the EBS space.
pY Unit price of the EBS space.
nX Number of the applied X instance.
nY Size of the applied EBS space.
N N = {nX | X = O, L, M, H, S, ...}.
TX Running time of the X instance.
TY Renting time of the EBS space.
C Total renting cost of the video streaming tasks V .

III. VIDEO TRAFFIC PREDICTION

A. Definitions

1) Video Traffic: According to a series of real world VoD
system log traces we have got from [5] and [1], there are
some common informations the system will log about each
video streaming task, like the begin time, end time, user ID,
IP address and the accessed video program ID. From the begin
and end time of the tasks, we can calculate the video traffic
in a certain time region, so we define the Video Traffic from
time a to time b (refer as VT[a, b]) as the number of all the
tasks that end after a and begin before b.

2) Minimum Instance Requirement: The VM instances have
a capacity upper bound to guarantee the QoS of the video
streaming tasks [2], so for any period of time like a to b, there
will be a least number of the VM instances to properly serve
the corresponding Video Traffic, which is defined as Minimum
Instance Requirement of time region a to b (MIR[a, b]). As
the instance capacity is defined as w in the former section, we
can give the relation between V T and MIR as follows:

MIR[a, b] = dV T [a, b]
w

e

Due to the characteristic of periodical variation of the video
streaming services, the Exponential Smoothing (ES) method is
quite a suitable way for the video traffic prediction. It is a kind
of time series analysis method developing from Whole Period
Average method and Moving Average method [7], it is also
one of the most frequently used prediction algorithms.

B. Prediction Strategy

The finest charging unit granularity of the reserved VM
instances’ upfront on EC2 is by year. So we consider giving
a bunch of video traffic data in the quantity of a week and
using the predicted data for another further week information,
repeating the iteration to get the video traffic of a month till
a year. The traffic is accurate to an hour, which is the EC2
charging unit.

Among the above three time series prediction algorithms,
the Whole Period average method uses all the historical data
of the time series with the equipotent precedence; the Moving
Average method takes no account of long-dated data and
gives the near-term data a higher weight; the Exponential
Smoothing method combines both of their advantages, it does
not abandon the old data but rather gives them a gradually
subdued influencing potency, which means the weight will
converge to 0 along with the distance increasing between the
historical data to current moment on the time series.

As the video traffic variation appears to be a trigonometric
function curve, we choose the Cubic Exponential Smoothing
method as our prediction algorithm. The smooth curve of
the video traffic variation can be fitted with a quadratic
polynomial:

V T [k, k + t] =

k+t∑
i=k

(dk + rk ∗ i+ acck ∗ i2/2)

We can see that V T [k, k+ t] is the video traffic from time
k to k+ t, dk is the video traffic variation trend of time k, rk



is the rate of video traffic variation trend of time k and acck is
the variation acceleration. These time-varying parameters can
be estimated by the following cube ES formula:

dk = α ∗ V Tk + (1− α)(dk−1 + rk−1 + acck−1/2)

rk = β ∗ (dk − dk−1) + (1− β)(rk−1 + acck−1)

acck = γ ∗ (rk − rk−1) + (1− γ) ∗ acck−1
α, β and γ are smoothing factors, with the value range of [0,
1], which determine the influencing potency between the near-
term variation and the long-dated historical data [8]. We adjust
the values of smoothing factors according to the real-time
observed prediction errors based on the dynamic estimation
method [9].

C. Prediction Validation

To evaluate the performance of the prediction algorithm,
we divide the log trace data into two sets: one for off-line
training and the other for on-line configuration simulation. We
calculate the predicted Video Traffic of the tasks in the second
sets by the rules extracted from the first one, then compare
with their real value recorded in the original trace.

Accuracy: We choose the Goodness of Fit and the Linear
Correlation Coefficient as the measuring standards of the
prediction algorithm. The Goodness of Fit here is considered
as the fitting degree between the predicted value and the real
value. It is simply defined as follows:

Goodness of F it = V Tp / V Tr

The V Tp and V Tr stand for the predicted and real Video
Traffic. From the definition we can see that the more the value
of Goodness of Fit is close to 1, the better the prediction
algorithm is. So we calculate the Relative Standard Deviation
of all the Goodness of Fit of each task and give their mean
value 0.081. It means that the prediction algorithm can give
an acceptable Video Traffic with the accuracy probability of
92%. As for the Linear Correlation Coefficient between the
historical and the predicted data in our case is 0.907, which
means the two datasets are positive correlation and have a
strong correlation. The following experiments show that this
result is befitting enough for the configuration algorithms.

Overhead: As the prediction informations are obtained by
just a few query operations from the existing off-line training
database, the overhead is almost negligible compared with
the following configuration algorithms. Besides, most of the
commercial VoD service websites will play advertisements for
dozens of seconds before the video program, which provides
sufficient time window for the prediction and even the config-
uration procedures.

The subsequent experiments of the resource configuration
algorithms will show that our prediction algorithm is pre-
cise enough to provide the proper predicted video traffic to
the configuration algorithms. But we will also explore more
accurate techniques to satisfy more complex systems like
serving multiple types of tasks in heterogeneous data center
environments in the future.

IV. ON-LINE CONFIGURATION SCHEME

A. Hybrid-R: On-Demand and Reserved Instances

As the example in Table I shows, neither the on-demand
instances nor the three types of the reserved instances solely
can not achieve the rental fee as low as the Hybrid-reserved
instances scheme, this is because the video traffic does not
maintain in a stable level but varies by the cycle of 24 hours
with wave peak and trough. If we all use the light-reserved
instances, the basic video traffic lower than the wave trough
that exists all the time will cost a higher unit price; On the
contrary, if we all use the high-reserved instances, the rush-
hour video traffic will be settled in a lower unit price but
we also must suffer the high upfront during the idle periods.
To balance between the reserve level and the video traffic
variation, we introduce the Instance Utilization Ratio as the
criterion of choosing which type of instances with a certain
video traffic in their variation cycle.

1) Instance Utilization Ratio: We define the Instance Uti-
lization Ratio (IUR) as the percentage of the actual running
time (trun) divided by the renting time (trent) of the instances:

Instance Utilization Ratio = trun / trent

If a instance is high-reserved, it will be charged for both
upfront fee and unit price during its whole renting time no
matter it is running or not, while if the instance is light or
medium-reserved, it will only be charged for upfront fee during
its idle time.

Figure 3 shows the rising trend of the 3-year-term reserved
rental fee of the basic type of storage optimized I2 instances
with Linux operating systems during the whole renting period.
We can see that in the over a thousand days, if the running time
reaches to about 200 days, using the light-reserved instances
will be cheaper than the on-demand instances, we call this
threshold as IURO−L, which is 18.3% in this case; Similarly,
if the running time is higher than about 520 days, the medium-
reserved instances will be superior to the light-reserved ones,
when the running time exceeds 910 days, the high-reserved
instances become the most economical one, we call the two
thresholds as IURL−M and IURM−H , which are 47.5%
and 83.1%. The three thresholds will be the main criteria of
allocating the proportion of the different types of the instances,

Fig. 3: The relationship between the three types of reserved instances
and on-demand instance and the Instance Utilization Ratio



to form the resource configuration scheme. As all the video
programs resource are stored on EBS and accessed by the
instances through network, we do not need to consider the data
locality problem in the following configuration algorithms.

2) Configuration Algorithm: With the assistance of IUR
and the predicted video traffic, we propose the on-line resource
configuration algorithm for the video streaming services in
cloud platform, as shown in Algorithm 1. The inputs of the
algorithm include the predicted video traffic V , the upfront
fees and unit prices of the four types of instances, the instance
capacity w and the configuring time cycle Z. And the outputs
are the applied numbers of the four types of instances and the
approximate lowest renting cost they present.

The algorithm is mainly divided into two steps:

Step 1: Calculate the Instance Utilization Ratio (IUR) of
the four types of instances; To do so, we introduce a group of
binary linear equations:

yi = pi ∗ xi + p̃i (i = o, l,m, h)

Algorithm 1 Hybrid-R: Hybrid Resource Configuration Algo-
rithm using On-Demand and Reserved Instances

Require:
The predicted hourly streaming video traffic of the next
service cycle time Z: V = {vk | k = 1, 2, 3, ...};
VM Instance capacity of video streaming services w;
The upfront fees and unit prices of the three types reserved
instances: p̃L and pL, p̃M and pM , p̃H and pH ;
The unit price of the on-demand instance: pO;

Ensure:
The number of the applied four types of instances that
give the lowest cost: N = {ni | i = o, l, m, h};
The total renting cost C of the video streaming tasks V ;

1: /*Step 1. Calculate the IURs*/
2: for instance type i:
3: yi = pi * xi + p̃i (yi: renting cost, xi: running time)
4: for xi ≥ 0 && xi ≤ Z:
5: if yo == yl:
6: then IURO−L = xi / Z;
7: else if yl == ym:
8: then IURL−M = xi / Z;
9: else if ym == yh:

10: then IURM−H = xi / Z;
11: /*Step 2. Calculate the instances renting proportion*/
12: for vk ∈ V : vmax is the maximum value of vk;
13: for ni ≥ 0 && ni ≤ dvmax/we:
14: if IURM−H ==

∑
k ni / vk:

15: then nh = ni;
16: else if IURL−M ==

∑
k ni / vk:

17: then nm = ni;
18: else if IURO−L ==

∑
k ni / vk:

19: then nl = ni;
20: else no = dvmax/we - nh - nm - nl;
21:

C = (pY ∗Z+ p̃Y )∗nY +
∑

X=O,L,M,H

(pX ∗Z+ p̃X)∗nX

22: return N = {ni | i = o, l, m, h}, C.

In the equations, the value range of instance type i is con-
sist of on-demand (o), light-reserved (l), medium-reserved (m)
and high-reserved (h), yi stands for the total renting cost of
type i instances, xi stands for the service time of the type
i instances. If the instance is high-reserved, xi would be the
whole renting time, otherwise, xi would only be its actual
running time. pi and p̃i are the unit price and upfront fee of the
instance i. To calculate the IURO−L, IURL−M , IURM−H ,
we let yo and yl, yl and ym, ym and yh be respectively
equivalent, just like the three intersections in Figure 3, and the
IUR will be the corresponding xi divided by the scheduling
duration time Z.

Step 2: Calculate the applied amount of each type of
instances and the total rental fee for the most cost-effective
scheme; We first scan V for the maximum value vmax of
hourly video traffic vk, to get the maximum hourly instance
demand quantity dvmax/we, in which w is the instance ca-
pacity of the video streaming tasks. Then according to the
IURs and the predicted video traffic V , the applied amount
of high-reserved instances should be the number that achieves
the utilization ratio of IURM−H among the whole video
traffic, in the same way, the amount of medium and light-
reserved instances should be the numbers that achieve the
utilization ratio of IURL−M and IURO−L, and the number
of on-demand instances should be the rest of all the required
resources. As the on-demand and reserved instances all use the
EBS spaces, nY is the total size of the global video database.
The total cost of the scheme can be calculated by Equation 1.

The service cycle time Z in our algorithm is set to one year,
same as the shortest reservation duration in EC2. But the re-
execution period can not be extended to such a long time. As
the video traffic of the VoD systems variates continually and
most of them have a rising tendency in the aspects of both
user scale and accessing amount. So we provide a dynamic
modulation strategy that in every other week, adding the
newest video traffic information into the input of the Video
Traffic Prediction algorithm to update the V of Algorithm 1,
and regulating the applied number of the VM instances.

B. Hybrid-RS: Hybrid-R with Spot Instances

As the on-demand instance has a much higher price than
the reserved instance while the spot instance has a much
lower one, we hereby utilize the task migration mechanism to
dynamically schedule the streaming services to further reduce
the total renting cost of the VoD system.

1) Spot Instance Specialties: Spot Instances are spare EC2
instances for which the users can name their own price.
The spot price is set by EC2, which fluctuates in real-time
according to spot instances supply and demand. When user’s
bid exceeds the spot price, the spot instance is launched and
will run until the spot price is higher than user’s bid or the user
choose to terminate them. There are three main specialties of
the spot instances:

• Spot instances perform exactly like other EC2 instances
but have possibility that might be interrupted.

• The users only need to pay no more than their maximum
bid price per hour.

• If the spot instance is interrupted by EC2, the user will
not be charged for the interrupted hour.



We can see that the features are all beneficial to apply video
streaming services on spot instances, except for the sudden
interruption may become the main restriction. So we have
to select the most applicative tasks for the trial. EC2 now
provides a new Spot Instance Termination Notices [10] policy
that reminds the users of resource reclaiming two minutes
beforehand, so that the users can save their status, upload final
log files, or move the tasks to other instances in this time. This
new policy allows more types of applications to benefit from
the scale and low price of spot instances, and also helps us to
introduce the spot instances to the configuration scheme.

2) Applicative Tasks: There are four types of tasks that
work well with Spot Instances.

Optional tasks: The users can run their optional tasks when
spot prices are low and stop them when the prices rise too high.

Delayable tasks: These tasks have deadlines that allow the
users to be flexible about when to run their computations.

Acceleratable tasks: The users can run spot instances to
accelerate their computing when the spot price is low while
maintaining a baseline layer by other instances.

Large scale tasks: These tasks require computing scale that
the users can not access any other way. With spot, they can
cost-effectively run thousands or more instances.

Compared with the above categories, video streaming tasks
have the highest possibility that they can be delayable as the
web player usually buffer minutes of videos in the client side.
However, not all the streaming tasks can endure the sudden
break in the middle of playing, we hereby set the following
rules that restrict the types of video streaming tasks that can
be applied onto spot instances, and how to reasonably utilize
the spot instances to balance the cost control and user demand:

a. Short tasks are more suitable for trial operation on
spot instances. As mentioned before, the spot instance can
be retrieved by the supplier at any time, so the longer the
streaming tasks are, the riskier they might be interrupted. As
for the criterion of short tasks, we hereby formulate it as from
no more than 5 minutes video programs in our algorithms.

b. There are also some higher-priority critical tasks that are
not appropriate for spot instances. For example, the live show
of important events, the paid video program from membership
users, which once be suspended, will all bring more severe
negative effects to user experience.

c. If a qualified task failed to run on the spot instance
due to resource absence, instead of waiting or trying again for
the new available spot instances, we would migrate the task
to guaranteed services like on-demand instances, to prevent
another breaking down during the users’ watching period.

3) Task Migration: The current state of art techniques can
manage the task migration procedure [11–14], and keep the
overhead under a reasonable level. Besides, some commercial
VoD system service providers like BokeCC [15] are also
applying the heartbeat mechanism to collect user behavior
informations and inserting checkpoints of task monitoring. By
the above works and our real log traces, we conclude that the
overhead of a streaming task migration can be controlled in
dozens of seconds, it is the time requirement of relocating
procedure of the interrupted tasks. As the streaming tasks
always have a buffered video segment in the length of a couple
minutes on the client side, and the minimum charging unit

of EC2 is hour, the migration time consuming is basically
unaware for the users and negligible for the cloud platform.

4) On-line Configuration Algorithm: Based on Algorithm 1
and the historical data of the real-world log trace, we can
calculate the proportion of the applicative tasks for spot
instances, extract the non-spot video traffic to get Nlmh and
Clmh of the basic configuration of the reserved instances,
then deploy Algorithm 2 to split the total video traffic V
into Vo, Vlmh and Vs, use the real time task information to
dynamically schedule them on spot and on-demand instances.
The algorithm is mainly carried out by two parallel parts:

Part 1: Try to assign a spot instance for an applicative task,
if the resource is retrieved during the serving period, count
back the task to that using on-demand instances and record
it in irk that composes the set of interrupted task numbers
IR. The cost of spot instances Cs and the Task Interruption
Rate (TIR) can be calculate by Vs, Ps and IR;

Part 2: Schedule the tasks from on-demand instances to
the reserved ones if there are spare volume, the priority is
high-reserved higher than medium-reserved higher than light-
reserved, as their upfront fees have been paid but the unit prices
are incremental. Unsubscribe an on-demand instance ahead of
time if there are no more tasks on it for cost conservation,
calculate the updated cost of the on-demand instances Co;

The total cost of the using-spot instance scheme
CHybrid−RS is the summation of Clmh, Cs and Co. After
the end of the algorithm, we can give the Cost Saving
Proportion (CSP) of the new scheme compared with the non-
spot scheme CHybrid−R:

CSP = (CHybrid−R − CHybrid−RS)/CHybrid−R

Algorithm 2 Hybrid-RS: On-line Resource Scheduling Algo-
rithm for video streaming services in cloud

Require:
Real-time video streaming tasks: T = {tk | k = 1, 2, ...};
Video programs length L = {lj | j = 1, 2, ...};
VM Instance capacity of video streaming services w;
The unit price of the on-demand instance: po;
The bid price of spot instances: pb;
The real-time hourly spot price Ps = {psi | i = 1, 2, ...};

Ensure:
The cost of spot and on-demand instances: Cs, Co;
The Task Interruption Rate: TIR;

1: for tk in hour i, whose video length is lj , vsi ∈ Vs:
2: if lj ≤ 300 sec, :
3: then tk ∈ Ts, ++ vsi;
4: /*Part 1. Spot Instances: Cs*/
5: for vsi ∈ Vs, voi ∈ Vo, IR = {iri | i = 1, 2, ...}:
6: if pB < pSi:
7: then - - vsi, ++ voi, ++ iri;
8: Cs =

∑
i dvsi/we * psi, TIR =

∑
i iri /

∑
i vsi;

9: /*Part 2. On-demand Instances: Co*/
10: for vlmhi ∈ Vlmh, voi ∈ Vo, nlmh = nl+nm+nh(∈Nlmh):
11: if vlmhi < w * nlmh:
12: then ++ vlmhi, - - voi;
13: Co =

∑
i dvoi/we * po;

14: return Cs, Co, TIR.



V. EXPERIMENTAL RESULTS

A. Evaluation Datasets and Environments

Datasets: In the evaluation we use two datasets: real-
world log traces from an on-line education platform and a
multimedia entertainment website. The first one is from a
popular on-line education platform XuetangX [5], and the
second one is generated with characteristics from mainstream
video services [6] based on traces from China Telecom VoD
system [1]. Details of the two datasets are as follows:

1) On-line Education (EDU) dataset: The on-line educa-
tion dataset consists of a log trace covering 121 days from
XuetangX [5]. We choose a part of the log trace as the off-
line training set and the rest part as the experimental test
case. Different from the commercial entertaining VoD system,
the data from XuetangX has some specialties like the single
category of video type and a more specific user group.

2) Multimedia Entertainment (ENT) dataset: The multime-
dia entertainment dataset is generated based on a log trace
covering 7 months in a VoD system with about 150,000 users
deployed by China Telecom. This log trace is authentic and
practical, however, its scale is not representative enough. It can
be counted that there are about twenty millions tasks totally in
half year, that is about one task per second in average. While in
a mainstream VoD service website, there are always hundreds
of tasks per second accessing even one popular video.

To overcome the disadvantage of this dataset, we reference
both the summarized characteristics of real VoD system user
behavior [6] and the statistical rules published in [1] to obtain
a large-scaled series of streaming tasks as our experimental
dataset. This log trace has the same quantitative variation and
length distribution as practical situation so it can better reflect
the algorithms’ functionality in real world.

Evaluation Environment: With the supporting of the real-
world datasets, we launch a series of simulated experiments
based on the EC2 platform. As the video streaming services
are I/O-intensive kind of tasks, we choose the 8-times-large
scale of storage optimized I2 instances with Linux operating
system of on-demand and reserved instance candidates, and the
8-times-large scale of storage optimized HS1 instances with
Linux operating system of spot instance candidates [4]. As all
the instances are using the EBS spaces, it needs the total size of
the global video database, which are charged according to its
pricing standard [16]. We use the one-year reserved instances
charging standards and the spot instance pricing history on
EC2 console by the period of one year. The bid price is set to
the average value of the medium reserved instance price. The
video traffic capacities of the two types of instances are more
or less the same, which are verified to be serving 350 video
streaming tasks synchronously.

B. Algorithm Performance

We first evaluate the performance in terms of renting
cost of our proposed configuration algorithms, and compare
them to each type of instances separately. The algorithms are
respectively evaluated using both of the two datasets.

Figure 4 and Figure 5 show the normalized renting cost of a
series of configuration schemes: On-Demand, Light-Reserved,
Medium-Reserved, High-Reserved, Hybrid the above four
types without or with Spot instances (Hybrid-R, Hybrid-
RS), from the on-line education dataset and the multimedia
entertainment dataset. The single spot instances configuration
scheme are not included because they can not afford serving
the whole dataset log trace due to their instability. To evaluate
the precision of the video traffic prediction algorithm, we im-
port both the real and predicted video traffic data informations
to the configuration schemes, corresponding to the off-line and
on-line version of the algorithms. For intuitively comparison,
we normalize the result of off-line configuration scheme of
On-Demand instance to 1, and other results to the relevant
times of it. The experimental results characteristics of the two
datasets are summarized as follows:

i The video traffic prediction is effective, as the differences
between on-line and off-line algorithms are small. From the
calculating results we can see that the accuracies of the pre-
diction are all higher than 90%, which is quite acceptable
under normal conditions. The prediction differences of the
multimedia entertainment dataset are even more smaller
than the on-line education dataset, it is because the video
traffic fluctuation of the former one is more substantial
and regular due to the entertaining time of the users
usually concentrate to off-work time while the studying
time can be arranged more flexibly. Besides, the larger
video traffic of the multimedia entertainment dataset also
provides greater advantage for the prediction algorithm.
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ii The hybrid resource configuration scheme of the four
basic instances types can effectively save the renting cost
compared with using each instances separately. The figures
show that the Hybrid-R scheme has more than 60% cost
saving compared with the off-line On-Demand instance
scheme with the multimedia entertainment dataset, and also
has about 20% superiority to other configuration schemes.
The results of the on-line education dataset is a bit inferior
because of the less video traffic and its narrow fluctuation
range.

iii The import of the spot instances can significantly improve
the results of the Hybrid-R configuration scheme, which is
more obvious in the on-line education dataset. As the cri-
terion of applicative tasks that applied on spot instances is
more suitable for the high-proportion short video programs
of the on-line education website. The trial of utilizing spot
instances in resource configuration scheme can contribute
the cost saving up to nearly 70% in both datasets. But
we still need to consider the negative effects of using spot
instances, the interruption during video program playing,
which is the main problem in user experience. We will
discuss the trading off between them in the subsequent
sections.

C. Algorithm Complexity

We also evaluate the algorithm complexity in terms of
algorithm execution time, in order to evaluate its impact on
the latency of on-line configuration. We use both theoretic and
measured execution time in this evaluation. The two datasets
are analyzed and evaluated separately and compared together.

1) Theoretic Time Complexity: The first algorithm has
nearly the constant level complexity, because it uses the
predicted video traffic information as input, the primary cal-
culations are the IURs and the instance number of each type,
which are hardly affected by task number scale increase. The
only scale-relevant part is the total renting cost calculation, but
it just has a slight impact on the global time complexity.

In the second algorithm, besides the resource configuration
part, all the tasks need to be checked once for estimating
adaptability on spot instance, so it has the O(nlogn) time
complexity. It means that the time cost will grow linearly
by the increase of video traffic, which is acceptable for the
scalability of the problem. All the theoretic analysis can be
verified in the following statistics results.

2) Measured Time Complexity: We use both the On-
line Education (EDU) dataset and the Multimedia Entertain-
ment (ENT) dataset as basis, expand the task number per
second till 10 times and record the total resource configuring
time and task scheduling time to measure the relationship
between time cost and the problem scale. Figure 6 gives the
charts of which X-axis is the magnification of the dataset task
number and the Y-axis is the calculation time of the algorithms.
We have three observations:

i The first algorithm (Hybrid-R) has a nearly constant time
complexity in both datasets, the calculation time costs
are all in the level of dozens of milliseconds and barely
increase by the expanding of the video traffic;

ii The second algorithm (Hybrid-RS) has a linear growth
trend in both datasets, the calculation time costs increase
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Fig. 6: Comparison of configuration algorithms on time complexity,
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tion (EDU) dataset and Multimedia Entertainment (ENT) dataset

within a dozen times along with the video traffic expansion,
which conforms to the former theoretic analysis about the
O(nlogn) time complexity;

iii The calculation time of the EDU dataset is shorter than
the ENT dataset because of smaller video traffic. While the
increment rate of the EDU dataset in Hybrid-RS algorithm
is higher than the ENT dataset due to the larger short task
proportion.

From the time complexity evaluation results we can see
that both of the two algorithms are working efficiently on our
datasets, the dozens of milliseconds time cost bring negligible
overhead to the whole VoD system. The configuration schemes
have a satisfactory scalability by the video traffic expansion,
they are promising choices for cost conservation strategies of
video streaming services in cloud.

D. Spot Instance Performance Price Ratio

According to the algorithm performance and complexity
evaluation, we can see that introducing the spot instance into
the configuration scheme brings both renting cost conservation
and scheduling time overhead. It is a trading-off problem to
balance the advantage and disadvantage. In this section, we
will quantify the relationship between the key influence factors
and the performance price ratio of the configuration scheme,
to give a direct perspective of the pros and cons of the spot
instance.

To simplify the comparison of the algorithm efficiency,
we hereby define the Performance Price Ratio (PPR) of the
resource configuration scheme as the Cost Saving Propor-
tion (CSP) divided by the Task Interruption Rate (TIR) in
Algorithm 2, which is represented as follows:

PPR = CSP/TIR

The most critical parameter of the resource configuration
scheme is the task number proportion that try on using the
spot instance, which is decided by the short task estimating
threshold. If the threshold is too short, there will be few tasks
can use the spot instances, then the cost conservation is non-
significant; If the threshold is too long, there will be too much
tasks on the spot instances, then the overhead of rescheduling



the interrupted tasks will also impact the system performance,
even bring negative effects to the user experience.

Figure 7 shows the normalized performance price ratio of
Algorithm 2, by the variation of the short task threshold within
20 minutes, the PPR curves of the On-line Education (EDU)
dataset and the Multimedia Entertainment (ENT) dataset man-
ifest the same variation trend but different peak point. They
are summarized as follows:

i The PPR curves both increase at the beginning and de-
crease when the threshold is broad enough. It is because
the broader the threshold is, the more tasks will be assigned
to try running on spot instances, the higher the Task Inter-
ruption Rate will be. If a task fails to use the spot instance,
it has to be rescheduled to on-demand instance, which is
much more expensive, so the Cost saving Proportion is
relatively reduced. Thus it can be seen that the short task
threshold can not be set too large in our spot instance trial
experiment.

ii The PPR peak point of the EDU dataset appears at 5
minutes, while that of the ENT dataset is on 10 minutes,
a bit higher than the former one. The reason is that the
tasks of the EDU dataset are generally shorter than that of
the ENT dataset, as the on-line educational video programs
are usually a few to a dozen minutes, yet the multimedia
entertainment website often has plenty of TV series and
movies that reach a length of tens of minutes even up to
hundreds of minutes. To get a similar short task proportion
that try running on spot instance, the ENT dataset will
reach a higher threshold than the EDU dataset.

From the experiment result we can see that to get an
optimal performance price ratio on utilizing the spot instances
in the cost-effective resource configuration scheme, we should
set a relatively conservative short task threshold and properly
modulate it to a appropriate value according to the dataset
characteristics. As Algorithm 2 dynamically schedules applica-
tive tasks onto spot instances along with the VoD system
operation, we can shift the threshold in a small window like 5
to 10 minutes and monitor the variation tendency of PPR, to
determine an optimal short task criterion.
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VI. RELATED WORK

VoD Video Traffic Prediction: H. Yu et al. contributes
one of the earliest comprehensive user behavior analysis in
large-scale VoD system [1]. It gives a statistical introduction
of streaming tasks characteristic, content access patterns and
their implications based on empirical data. Many works have
been concentrated on video traffic prediction involving many
kinds of areas. They can be as simple as the pure exponential
smoothing predicting methods [7, 17], or more sophisticated
forecasting approaches [18, 19]. Though the strategy we used
in this paper is the simple exponential smoothing algorithm,
it can properly provide the video traffic informations which is
accurate enough to assist the configuration schemes, and also,
with a negligible overhead. So it is unnecessary to employ a
sophisticated prediction algorithm at present, but it also will
be a valuable exploration direction.

Instance Configuring: Many researchers have presented
works about cost minimization on public cloud platforms,
like the probabilistic model [20], the analytical performance
price model [21] and spot instances trail model [22–24].
Paragon [25] is an on-line interference-aware scheduler in
heterogeneous data center. It predicts the characteristics of
the incoming workload by identifying similarities to previous
applications and greedily schedules them in an interference-
minimized and server utilization-maximized way. Our pro-
posed configuration scheme is a integrated complement of the
above works in the VoD system clusters.

Cost Conservation: Many research works have been con-
ducted for cost conservation from different levels, ranging from
architecture level to data center level [26–30]. In VoD clusters,
Y. Chai has proposed a enegery-conserving data migaration
for streaming storage systems [31]. This work focuses on
the energy consumption in storage systems and optimizes
data migration algorithms. In comparison, our scheme focuses
on the running time consumption of virtual instances and
optimizes the rented instance types configuration.

VII. CONCLUSION AND FUTURE WORK

Cost conservation is becoming an important design issue
in video clusters with increased popularity of video services
in cloud platform. Existing users ignore the phenomena that
applying single type of instance could lead to sub-optimal
rental fee cost. In this paper, we propose a lightweight video
traffic prediction algorithm and two heuristics cost-conserving
on-line configuration algorithms based on that. The algorithms
are evaluated using both log traces from on-line education
systems and multimedia entertainment platform that follow
the empirical characteristics from mainstream video service
websites. Results show that our algorithms save significant cost
with negligible overhead.

There are three aspects we would like to improve in the
future. The first is to improve the accuracy of video traffic
prediction with more sophisticate techniques. The second is to
consider more task types in the model, like another common
trans-coding tasks in VoD systems, which are often used in
video program format and code rate conversion. The third
is to introduce our algorithms to a more complex model
with heterogeneous servers with task interference and more
complicated user behaviors.
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