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ABSTRACT
There has recently been an increase in the number of RDF
knowledge bases published on the Internet. These rich RDF
data sets can be useful in answering many queries, but much
more interesting queries can be answered by integrating in-
formation from different data sets. This has given rise to
research on automatically linking different RDF data sets
representing different knowledge bases. This is challenging
due to their scale and semantic heterogeneity. Various ap-
proaches have been proposed, but there is room for improv-
ing the quality of the generated links.

In this paper, we present ALEX, a system that aims at im-
proving the quality of links between RDF data sets by using
feedback provided by users on the answers to linked data
queries. ALEX starts with a set of candidate links obtained
using any automatic linking algorithm. ALEX utilizes user
feedback to discover new links that did not exist in the set
of candidate links while preserving link precision. ALEX dis-
covers these new links by finding links that are similar to
a link approved by the user through feedback on queries.
ALEX uses a Monte-Carlo reinforcement learning method to
learn how to explore in the space of possible links around
a given link. Our experiments on real-world data sets show
that ALEX is efficient and significantly improves the quality
of links.

Categories and Subject Descriptors
H.2.5 [Heterogeneous Databases]
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1. INTRODUCTION
In recent years, advances in the field of information ex-

traction have helped in automating the construction and
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publishing of large RDF knowledge bases. Some of these
knowledge bases are general-purpose [3, 9, 11], and others
focus on specific domains such as movies1, geographic infor-
mation2, music3, and city data4. Publishing these RDF data
sets on the web was encouraged by the Semantic Web prin-
ciple of making data on the web readable and processable
directly by machines [5]. However, publishing these data
sets alone is not sufficient. The true power of linked data
is realized only when the data sets are linked to each other
so that their semantic properties can be fully exploited [8].
Linking data sets is crucial for answering queries that can-
not be answered using one RDF data set alone. For exam-
ple, consider the query “Find all New York Times articles
about the NBA’s MVP of 2013”. Articles about people are
available from the New York Times RDF knowledge base.
However, we need to know who the “NBA’s MVP of 2013”
is, since this information cannot be found in the New York
Times data set. Another data set like DBpedia could have
the information that “LeBron James” is the “NBA’s MVP of
2013”. One can use the Web Ontology Language (OWL)5 to
define an owl:sameAs relation linking the two entities repre-
senting “LeBron James” from both data sets. This relation
indicates that the two entities refer to the same individual,
and enables the system to return all articles about “LeBron
James” from the New York Times data set.

Some work has been done on aligning RDF schemas [4, 13]
and automatically linking equivalent entities from different
data sets [6, 12, 14]. That work aims to automatically in-
troduce owl:sameAs links between two data sets. However,
automatic linking approaches are best effort in nature, with
no guarantees on output quality. They try to infer seman-
tics automatically based on syntax, which is a difficult task
in the absence of human guidance. As such, automatic link-
ing of RDF knowledge bases can greatly benefit from user
feedback on the quality of the generated links.

In this paper, we introduce ALEX (Automatic Link Explo-
ration in Linked Data), a system that improves the quality
of links between linked data RDF data sets by utilizing feed-
back that users provide on answers to their queries. ALEX

allows users to issue queries over multiple RDF data sets
that are linked using any automatic linking approach. These
queries can be answered using one or more data sets. When
the query answer is produced using links between multi-

1http://www.linkedmdb.org/
2http://www.geonames.org/
3http://musicbrainz.org/
4http://www.data.gov/opendatasites
5http://www.w3.org/2001/sw/wiki/OWL
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ple data sets, ALEX gives the user the opportunity to ap-
prove or reject the query answers. ALEX considers the ap-
proval/rejection of a query answer as an approval/rejection
of the link(s) used to produce this answer, and it uses this
feedback to improve the quality of links. ALEX uses a stochas-
tic technique that generalizes the feedback provided by the
user and is resilient to errors in that feedback. Errors in user
feedback (approving a wrong answer or rejecting a correct
answer) can arise due to errors in the data or errors made
by the user.
ALEX starts with a set of automatically generated links

that can be produced using any automatic linking algorithm
(referred to as candidate links). ALEX removes incorrect links
rejected by the user, but the main focus of ALEX is to find
new links that are similar to the links approved by the user.
The way ALEX finds similar links is as follows: An entity in
an RDF data set is represented by a URI. Each entity has a
set of attributes (RDF predicates), and values correspond-
ing to these attributes (RDF objects). We represent a link
between two entities from different data sets by a set of fea-
tures made up of the attributes of the two entities. A feature
is a pair of attributes where the first attribute comes from
the first entity and the second comes from the second entity.
Each feature has a value, which is the similarity score of the
values of the two attributes. When a user approves a link by
approving a query answer based on this link, ALEX chooses
one feature and finds new candidate links for which the value
of this feature (i.e., the similarity score) is within a (narrow)
range around the value of the feature of the approved link.

An important question that ALEX needs to answer is:
Which feature to explore around for a given approved link?.
Exploring around a random feature is not effective since it
incorrectly assumes that all features are of equal importance
in determining whether the entities are equivalent. At the
same time, ALEX has no prior knowledge of which features
may be important, and the best feature to explore around
can depend on the link being explored. For example, the
title of the two entities may be a good feature to explore
around for some link, while the date of birth may return
better results for another link. Thus, ALEX needs a way to
identify the feature to explore around for any approved link
between any two entities.

In this paper, we propose that this problem can be solved
using Monte Carlo reinforcement learning methods [22],
where the system can learn which feature to explore around
for different links. Using the terminology of reinforcement
learning, ALEX aims at learning from interacting with the en-
vironment in order to learn the best action to take (feature
to explore around) in order to maximize reward (positive
user feedback). The feature is chosen by ALEX using a policy
that is iteratively improved.

We also develop several optimizations that help ALEX to
converge in fewer steps. These optimizations include re-
ducing the search space of links, partitioning the data to
exploit parallelism, using a blacklist to prevent known in-
correct links from being proposed, and rolling back actions
to undo actions that result in exploring many incorrect links.

Our experiments over real-world data sets show that ALEX
can improve the quality of the initial set of candidate links,
while not exposing the end-user to a large number of incor-
rect answers. Experiments also show that ALEX converges
in a reasonable amount of time and is robust to changes in
parameters values.

The contributions of this paper are as follows:
• To the best of our knowledge, we are the first to bridge

the gap between automatic linking of data sets on one
side and querying linked data on the other side by lever-
aging user feedback to discover new links between enti-
ties without prior knowledge of the data sets or how they
were originally linked.
• We propose a reinforcement learning approach to find

new links while preserving link precision.
• We develop optimizations to reduce execution time and

converge in fewer steps.
• We prove that our approach is sound in terms of finding

an optimal policy for links exploration.
• We demonstrate the validity of our approach by running

experiments on large, real-world, multi-domain data sets.
The rest of the paper is organized as follows: Section 2

gives an overview of the related work. Section 3 gives some
background on reinforcement learning and an overview of
ALEX. We describe the details of ALEX in Section 4. In Sec-
tion 5, we prove the soundness of ALEX. Section 6 shows
our optimizations for faster convergence. In Section 7, we
discuss our experiments. We conclude in Section 8.

2. RELATED WORK
Automatic Linking: Linked data has enabled seamless

connections between open data sets [7]. The idea is to link
entities from different data sets that are semantically equiva-
lent to each other. There have been many works on semantic
matching of entities, taking different approaches. The SILK
framework [23] uses manually defined mapping rules that
are applied on input data sets. New data sets require new
mapping rules. OBJECTCOREF [14] uses training data to
learn how to link entities. However, this requires having
good training data that captures most aspects of the input
data sets, which is difficult in practice. PARIS [21] is a
powerful probabilistic holistic automatic linking algorithm
that is fully automatic and does not require any prior in-
formation. It also produces better quality links than other
approaches. Due to its generality and superior quality, we
use PARIS in this paper as our automatic linking algorithm
to produce the candidate links that are the starting point
for ALEX. However, we emphasize that ALEX can work with
any initial set of candidate links, regardless of how they were
generated.

Incorporating User Feedback: User feedback has been
used to improve schema matching in relational data. In [1],
user feedback is used in an iterative exploratory process to
guide the system towards the best data sources for the user,
and the best mediated schema for these sources. In [15],
user feedback is used to order candidate matches so that
they can be confirmed by the user. The candidate matches
are sorted based on their importance (i.e., they are involved
in more queries or associated with more data). A user is
asked to confirm or reject each match. In [16], the user is
asked during the schema matching process about matches
that the system is uncertain about in order to choose the
correct match. In the Crowd ER system [24], users are also
asked to confirm or reject entity matches. However, due
to the large number of questions that can be asked, the
system is more concerned with choosing questions that need
to be answered first (questions that are more challenging
to computers). In contrast to these approaches, ALEX does
not ask the user to provide feedback on links but rather on



answers to queries. The user wants to see the answers to the
queries anyway, so providing feedback on query answers is
easier for the user than providing feedback directly on links.

In [25], user feedback is obtained over the answers to a
keyword search query. The feedback is represented as a
constraint over the ordering of the returned answers, or as
identification of good or bad answers. The feedback is then
utilized to improve the ordering of answers to future queries.
In contrast, ALEX does not expose the user to the ontology of
the data sets or the details of the linked entities but rather
directly improves the quality of links by utilizing user feed-
back on the answers to her queries.

In the context of linking open data, ZenCrowd [10] utilizes
the crowd by forming micro-tasks using a probabilistic model
for manual matching. Its goal is to link traditional web
content to the Linked Open Data (LOD) cloud6. In this
paper, we utilize user feedback to improve the quality of
links in the LOD cloud to which ZenCrowd tries to link
traditional web pages.

One goal of [2] that is related to our problem is to refine
links in DBpedia by removing incorrect links to external web
pages or resources. Users are shown a caption of the external
source and determine if it matches the entity in DBpedia or
not. In contrast to all the aforementioned approaches, the
most distinct feature of ALEX is that it not only removes
incorrect links from the set of candidate links, but also dis-
covers new links that were not part of this set.

3. BACKGROUND AND OVERVIEW

3.1 Reinforcement Learning
In reinforcement learning [22], the learner and decision

maker is called the agent. Everything else outside of the
agent is considered to be the environment. A reinforcement
learning system consists of four main components:
• Policy : The policy defines how a reinforcement learn-

ing agent interacts with the environment at a given
state. It can be viewed as the mapping from an envi-
ronment state to an action taken by the agent. The
policy can be as simple as a lookup table, or it can
involve extensive computations. It also can be either
deterministic or stochastic. In ALEX, we use a stochas-
tic policy. For example, consider a user providing pos-
itive feedback on the link (E1, E2), where E1, and
E2 are entities. The policy π might state that when
this link is encountered, explore around the feature
(E1.label, E2.name) with probability 0.8, and around the
feature (E1.birth,E2.birthDate) with probability 0.2.
Formally, π((E1, E2), (E1.label, E2.name)) = 0.8 and
π((E1, E2), (E1.birth,E2.birthDate)) = 0.2. When an
action is chosen, say the one that has higher probability,
then π ((E1, E2)) = (E1.label, E2.name). More details
are presented in the following sections.
• Reward Function: The reward function defines the goal

of the reinforcement learner. It can be viewed as a map-
ping from a state (or a state-action pair) to a reward.
The goal of the agent is to maximize the total reward
throughout its dynamic interactions with the environ-
ment. For example, assume a positive feedback over
the link (E1, E2) resulted in the exploration of 5 links
{link1, . . . , link5}. Assume that positive feedback comes

6http://lod-cloud.net/

over link1 and link5, negative feedback comes on link3,
and no feedback is received over link2 and link4. In this
case, the reward is R(E1, E2) = 2×pReward−nReward.
• Value Function: The value function defines what is good

in the long run. A value of a state can be viewed as the
total reward that can be collected from this state taking
into account the states that are likely to follow and the
rewards available from those states. The major difference
between the reward function and the value functions is
that the first indicates what is good in an immediate
sense (next reward), whereas the second indicates the
long-term value of a state (total rewards that can be
collected in the future starting from the current state).
The reward of a state may be low but its value can be
high because other states that yield high rewards can be
reached from this state.
• Environment Model (optional): This model simulates the

behavior of the environment. For example, given a state
and an action, the model can determine which state is
next and the reward of the action. The model is used in
planning because it enables the agent to determine which
action to take without experiencing the state. However,
there may be cases where a model is not available. In
this case, the only way to determine the next state and
reward given a state and action is by actually performing
the action in the environment. In ALEX, the environment
model is unknown because it is not possible to know in
advance what feedback users will provide.

Reinforcement learning differs from other branches of ma-
chine learning in that the learning agent is not told what
actions to take. The agent learns over time how to act by
experiencing the return it gets from interacting with the dy-
namic environment. Reinforcement learning is more suitable
than supervised learning [17] for interactive problems where
it is impractical to obtain examples of the desired behav-
iors to use as training data that are correct and representa-
tive of most situations in the environment. The reinforce-
ment learning agent learns how to act by trying different
actions at different states and aiming to maximize the ex-
pected return at those states [22]. The challenge that faces
the learning agent is finding a balance between the need
to explore as many states as possible while exploiting the
current knowledge to maximize the total reward. Also, rein-
forcement learning needs a way to evaluate the policy used
to take actions in order to improve it. In ALEX, we use a
Monte Carlo method to evaluate the policy through returns
from interactions with the environment. This is a suitable
approach in situations like ours where the model of the en-
vironment is not known.

3.2 Overview of ALEX
Before we present the details of ALEX, we present an end-

to-end overview. ALEX can be integrated in a system that
answers queries over multiple data sets of RDF linked data
(e.g., data sets in the Linked Open Data cloud). In this pa-
per, we use SPARQL7 as the query language, although other
query languages can be used. An application may send a
SPARQL query that can only be answered using data from
different data sets that are linked by owl:sameAs links. If
a link is correct, answers returned based on this link should
also be correct unless the data itself is erroneous (which is
beyond the scope of this paper). The user evaluates the

7http://www.w3.org/TR/sparql11-query/
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returned answer and gives her feedback by marking the an-
swer“correct”or“incorrect”. If the feedback is positive, ALEX
tries to find new owl:sameAs links that are similar to the
approved link. If the feedback is negative, ALEX removes this
link. ALEX works as follows:
• ALEX accepts the links between two data sets as input.

These links are automatically generated by any auto-
matic linking algorithm.
• Federated queries are issued over the linked data. A fed-

erated query is a query whose answer is not available
in one data source, but can be answered using multiple
data sources. The query is decomposed into subqueries
for each involved data source. However, this fact is hid-
den from the user who issues the query as if all data is in
one place. Answers are retrieved using a federated query
processing system (e.g. FedX [19]). A user then gives
her feedback on the returned answers. The feedback is
as simple as approving or rejecting the returned answer.
ALEX takes action immediately based on the feedback,
since it assumes that this feedback is correct. However,
ALEX has techniques to recover from incorrect feedback.
• ALEX represents each link as a state, starting from which

it takes an action after receiving user feedback. The ac-
tion, in the case of positive feedback, can be described
as choosing a feature to explore around within some ex-
ploration distance. In the case of negative feedback, the
wrong link is removed from the set of candidate links.
• The given feedback is translated into a reward in ALEX.

This reward is positive in the case of an approved link
(positive feedback), and negative in the case of a rejected
one (negative feedback). The value of the reward can be
the same for positive and negative feedback, or negative
feedback can be penalized more.
• ALEX explores links in a space of feature sets. This space

is populated in a pre-processing step, with a feature set
for every pair of entities in the two data sets.
• Initially, ALEX chooses arbitrary actions whenever a state

is encountered because there is no prior knowledge of
what actions to take. Rewards are collected for each
state-action pair encountered, and are aggregated to es-
timate the value of the state-action pair. This is called
policy evaluation.
• Policy evaluation takes place until sufficient feedback is

collected. We call this a feedback episode. At the end of
an episode, policy improvement takes place. Policy im-
provement modifies the policy so that actions that max-
imize the reward are taken most of the time, while as-
signing a low but non-zero probability to other actions
in order to ensure continuous exploration.
• These last two steps of policy evaluation and policy im-

provement are repeated until convergence. ALEX con-
verges when the set of candidate links does not change af-
ter an iteration of policy evaluation - policy improvement
or when a maximum number of iterations is reached.
ALEX can also use a more relaxed convergence condition
and stop if the change in the set of candidate links is less
than 5%.

4. DISCOVERING NEW LINKS IN ALEX
Starting with the output of any automatic linking algo-

rithm, ALEX’s goal is to (1) discover new links that did not
exist in the set of candidate links (which improves recall),
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Figure 1: Architecture of a federated query system
with ALEX.

and (2) preserve the correctness of links by quickly eliminat-
ing wrong links in the output (which improves precision).

Figure 1 shows the architecture of ALEX, in which a user
issues a query over RDF data sets that are linked using
some automatic linking algorithm. The query is answered
by a federated query processing system that is able to answer
queries that span multiple data sources (e.g., [18] or [19]).
If a query answer is generated based on a link between two
data sets, the user is given a chance to evaluate this answer
and provide feedback about which answers are correct and
which are not. This feedback is interpreted as feedback on
the link that is used to generate the answer. That is, if the
answer is correct then the link is correct, and if the answer is
incorrect the link is incorrect. The feedback is sent to ALEX,
which uses its current policy to take an action based on the
current state. We emphasize that a user is not required to
provide feedback on each query answer; if no feedback is
provided on an answer, this answer will simply not trigger
an action by ALEX. In ALEX, the state is represented by the
feature set of the link used to answer the query, while the
action is choosing one feature around which ALEX will explore
to find new candidate links. The action results in adding
these links to the set of candidate links.

An important aspect of reinforcement learning is improv-
ing the policy after using it for some time. In ALEX, this is
achieved by grouping feedback on states into episodes, where
each episode has a number of feedback items. The policy is
evaluated while the episode of feedback is collected. Policy
evaluation is defined as estimating the value of the states or
state-action pairs encountered in an episode. Grouping feed-
back items into episodes makes the evaluation of the value
of the states or state-action pairs more accurate. The larger
the number of feedback items in an episode, the more accu-
rate the estimation of the value. At the end of an episode,
changes are made to improve the current policy to maximize
the collected rewards, a process called policy improvement.
The current policy defines the actions that ALEX takes within
an episode, until the policy changes at the end of the episode
through policy improvement. ALEX continues the iterations
of policy evaluation and policy improvement until conver-
gence.



4.1 States in ALEX
In a general reinforcement learning problem, the agent

and the environment interact at every discrete time step,
t = 0, 1, 2, . . . . At each time step t, the agent perceives
the state of the environment st ∈ S, where S is the set
of all states in the environment. The agent then takes an
action at ∈ A(st), where A(st) is the set of all actions
available at the state st. As a result of the action taken,
the agent receives a reward rt+1 and a new state st+1 is
reached. The agent’s action is determined by the policy πt
where πt(s, a) is the probability that at = a at st = s. In
ALEX, the state is defined by the link that was approved or
rejected by a user in a feedback item. The state is repre-
sented by the state feature set sf of many-to-many map-
pings between the attributes of the two entities that are
linked by the link being considered. For example, consider
the two entities E1 and E2 with n and m attributes, re-
spectively, E1 = {(p11, o11), (p12, o12), . . . , (p1n, o1n)}, and
E2 = {(p21, o21), (p22, o22), . . . , (p2m, o2m)}, where each at-
tribute is the pair (predicate label, predicate value). An ex-
ample entity is {(name,“LeBron James”), (birth date, 1984),
(age, 29)}. We first construct a similarity matrix between
the two entities using a similarity function that returns a
score in the range [0, 1]. An element in the similarity matrix
is ((p1x, p2y), score) where p1x is a predicate from the first
data set, p2y is a predicate from the second data set, and
score is the similarity between the objects associated with
these predicates, score = sim(o1x, o2y). Scores that are less
than a specific threshold are discarded. ALEX uses a generic
similarity function that depends on the type of the attributes
to be compared (string, integer, float, date, etc.). The state
feature set sf is then constructed by choosing the maximum
value for each row in the similarity matrix if n > m or each
column if m > n. In this paper, we use the terms state and
link interchangeably.

4.2 Actions in ALEX
Given a state st, ALEX takes an action at that is based

on a policy πt. The environment (the user in our case)
then responds with a reward rt+1. The ultimate goal of
ALEX is to improve the policy πt so that the maximum total
reward is collected. The action of ALEX can be perceived
as exploring an area surrounding the current state (the link
between two entities) in a particular direction (one feature
of the feature set). Given a state represented by a feature
set sf of n features, the action a is also a feature set af of
n features with a single non-zero feature that represents the
offset by which ALEX should explore to discover new links.
Formally, ALEX finds all the links that have similarity value
between sf and sf ± af . For example, consider the feature
set sf(E1, E2) ={((label, name), 0.8), ((birth, year), 0.6),
((age, year), 0.4)}. The first element of the feature set means
that the predicate label from the first entity maps to the
predicate name from the second entity, and the similarity
between the predicate values is 0.8. A possible action can be
represented by the action feature set af(E1, E2) ={((label,
name), 0.05), 0, 0}, which means that links that have a
similarity score between attributes label and name in the
range [0.75, 0.85] should be added to the set of candidate
links for future queries and possible feedback opportunities.
The step size (0.05 here) is a parameter in ALEX.
ALEX can sometimes take an action that explores around

a feature that has values that do not distinguish between

entities. For example, it can decide to discover links around
the feature (rdf:type, rdf:type) which has a categorical value
owl:thing. Exploring around this feature and value is ex-
pected to return a large number of incorrect links because
a large number of different entities share this attribute and
value. ALEX can learn that this feature is not distinctive and
avoid exploring around it in the future.

4.3 Rewards and Feedback
The goal of ALEX is to maximize the expected return, Rt,

defined as the sum of all future rewards:
Rt = rt+1 + rt+2 + . . .+ rT (1)

where T is the final time step. In ALEX, the final time step
is when a feedback episode ends. After that, the policy used
during the episode is refined through policy improvement,
and a new episode is started using the new policy.

In ALEX, the reward is the feedback given by the user. The
feedback could be positive (approving a link) or negative
(rejecting a link). The value of the reward can be equal in
both cases, or we can severely penalize wrong links by giving
them a negative value that is larger than the positive value
of the approved link.

We also need to define the value of taking an action a at a
state s under a policy π. The action-value function Qπ(s, a)
is defined by:

Qπ(s, a) = Eπ {Rt|st = s, at = a}

= Eπ

{
T∑

k=t+1

rk|st = s, at = a

}
(2)

where Eπ is the expected value given that ALEX follows policy
π. A fundamental property of the value function is that
it follows a recursive relationship between the current and
future state-action values:

Qπ(s, a) = Eπ

{
T∑

k=t+1

rk|st = s, at = a

}

= Eπ

{
rt+1 +

T∑
k=t+2

rk|st = s, at = a

}

=
∑
s′

P ass′

[
Rass′ + Eπ

{
T∑

k=t+2

rk|st+1 = s′, at = a

}] (3)

where P ass′ is the probability that the next state is s′ when
action a is taken at state s at time step t: P ass′ = Pr{st+1 =
s′|st = s, at = a}, and Rass′ is the expected value of the next
reward when taking action a at state s to move to state s′:
Rass′ = E{rt+1|st = s, at = a, st+1 = s′}.

The relationship between the action-value of the current
state and that of the next state can be obtained from Equa-
tion 3 as follows:

Qπ(s, a) =
∑
s′

P ass′

[
Rass′ +

∑
a′

π(s′, a′)×

Eπ

{
T∑

k=t+2

rk|st+1 = s′, at+1 = a′
}]

=
∑
s′

P ass′

[
Rass′ +

∑
a′

π(s′, a′)Qπ(s′, a′)

] (4)



where π(s′, a′) is the probability of choosing action a′ at
state s′ according to policy π. In ALEX, when a positive
feedback item is received over a link (state) s, and an action
a is taken based on a policy π with probability π(s, a), a
number of new links (states) is discovered and added to the
set of candidate links. When one of these states s′ is later
visited and feedback (positive or negative) is received over
it, we know then the value of Rass′ . We assume that all states
that are generated by an action a have equal probability of
being visited. Thus, P ass′ = 1

|s′| .

A policy π′ is considered to dominate another policy π if

and only if Qπ
′
(s, a) ≥ Qπ(s, a) for all s ∈ S. In this sense,

π∗ is considered to be an optimal policy if its value function
dominates the value functions of all other policies. There
may exist more than one optimal policy. An optimal policy
implies an optimal action-value function:

Q∗(s, a) = maxπ Q
π(s, a) (5)

for all s ∈ S. Therefore, Equation 4 becomes:

Q∗(s, a) =
∑
s′

P ass′
[
Rass′ +maxa′Q

∗(s′, a′)
]

(6)

4.4 Iterative Improvement
After an episode of feedback is collected, ALEX improves

the policy based on the value function evaluated during the
episode. A new episode is then started and the policy eval-
uation - policy improvement iterations continue until ALEX
converges. Convergence is defined by the candidate links
not changing in an episode of feedback. In the following, we
discuss how the policy is evaluated during an episode, and
improved at the end of the episode.

4.4.1 Monte Carlo Policy Evaluation
The value function can only be evaluated through inter-

actions between ALEX and the environment (the user and
existing links). According to our definition of value, the
value of a state or state-action pair can only be known if a
user gives feedback on the current state and future states
that follow. Since we need to evaluate the value function
at the present time without waiting for future feedback, we
need to estimate the value function according to the cur-
rent state s, policy π, and action taken a. We use a Monte
Carlo (MC) method for this estimation. Specifically, we use
a Monte Carlo method to estimate the action-value of each
state visited during each episode, while feedback is collected.

The existence of a state s in an episode is called a visit. We
use a first-visit MC approach [22] for estimating the action-
value function. In the first-visit MC approach, the average
of returns following the first visit to s in which action a was
taken is maintained. This means that if the state-action pair
(s, a) is witnessed again during an episode, returns following
that pair will not be considered. For example, if a state s2
results from the state-action pair (s1, a1), and s2 turns out
to be a correct link, a positive reward is added to the return
of state-action pair (s1, a1). Now, if from state s2, action a2
is taken and results in a wrong state s3, a negative reward
is added to (s2, a2) and (s1, a1). However, when state s2 or
s3 is encountered again, no reward is added to the updated
returns of the state-action pairs during the current episode.
If a state, say s2, is encountered in a future episode, that
would be considered a new first visit. The first-visit MC
approach converges asymptotically to Qπ(s, a) [20].

The MC method requires π to be probabilistic. If π is de-
terministic rather than probabilistic at a state s, the same

action a will always be taken. Thus, many relevant state-
action pairs may never be visited. In such a case, there
would be no need for learning how to choose among actions
at any state. To compare the alternatives, we need to esti-
mate the value of almost all actions from all witnessed states.
ALEX ensures continual exploration to avoid this problem.
ALEX gives itself the option of choosing any action at any

state. This means that at any state s ∈ S, and for all ac-
tions available in that state a ∈ A(s), π(s, a) > 0. ALEX

achieves this non-zero probability by using an ε-greedy pol-
icy so that it mostly chooses a greedy action that has the
maximal estimated action value, but chooses a random ac-
tion with low probability ε > 0. In other words, with proba-
bility 1− ε+ ε

|A(s)| a greedy action is taken, and with prob-

ability ε− ε
|A(s)| , a non-greedy action is taken. This satisfies

π(s, a) ≥ ε
|A(s)| > 0, which means that no action has zero

probability of being selected by the current policy, thereby
ensuring continuous exploration.

4.4.2 Policy Improvement
If the rewards, Rass′ , and the probabilities of moving to

states given an action, P ass′ , are known in advance, Equa-
tion 6 has a unique solution since it is actually a system of
N equations where N is the number of states in the environ-
ment. If the optimal value function is known, it is straight-
forward to determine an optimal policy: At any state s,
choose the action that yields the maximum value of Q∗(s, a)
in Equation 6. In other words, a greedy policy with re-
spect to the optimal evaluation function is the optimal pol-
icy. However, as explained earlier, the feedback on links
and which states can be visited next are unknown in our
problem. This means that the reward of the current action
will not be known until the user gives feedback on the links
discovered after the current action is taken. Also, the next
state visited is not known in advance.

The previous section explained how a Monte Carlo method
can be used to estimate Qπk for arbitrary probabilistic πk,
where k is the iteration number in the policy evaluation
- policy improvement cycle. Policy improvement is done
by making the policy greedy with respect to the current
value function. That is, for any action-value function Q,
the greedy policy is the one that, for all s ∈ S, chooses the
action with the maximal Q value:

π(s) = argmaxaQ(s, a) (7)
Equation 7 can be used as the basis for policy improve-

ment as follows:
Qπk (s, πk+1(s)) = Qπk (s, argmaxaQ

πk (s, a))

= maxaQ
πk (s, a)

≥ Qπk (s, πk(s))

(8)

where, as explained above, πk+1 is the greedy policy with
respect to Qπk . In Section 5, we prove πk+1 dominates πk.

4.5 Interaction Between Policy Evaluation and
Policy Improvement

The value function is repeatedly updated to approximate
the actual value of the current state with respect to the
current policy. Also, the policy is repeatedly improved with
respect to the current value function. Iteratively, these two
processes cause the policy to approach optimality, and the
value function to approach its actual value.

As discussed before in Section 4.4.1, each evaluation step
moves the value function Qπk towards its actual value. This



Algorithm 1: ALEX with ε-greedy policy

input : set of states S, set of actions A
output: action-value function Q(s, a), Policy π(s)

1 // Initialize
2 for all s ∈ S do
3 for all a ∈ A(s) do
4 Q(s, a) = undefined;
5 π(s) = arbitrary action;
6 Returns(s, a) = empty list;

7 end

8 end
9 while set of candidate links different from last iteration

do
10 // Policy Evaluation
11 while episode not complete do
12 receive feedback on a state s′;
13 if first visit of s′ then
14 append feedback value to all Returns(s, a)

that led to s′;

15 end
16 Q(s, a) = AV G(Returns(s, a));
17 if positive feedback then
18 a′ = π(s′);
19 else
20 remove link;
21 end

22 end
23 // Policy Improvement
24 for all states s in episode do
25 a∗ = argmaxaQ(s, a);
26 for all a ∈ A(s) do
27 if a = a∗ then
28 π(s, a) = 1− ε;
29 else
30 π(s, a) = ε

|A(s)| ;

31 end

32 end

33 end

34 end

value function converges to its actual value over many steps,
at which point policy improvement can terminate. However,
this process would require many feedback episodes for each
policy improvement iteration. ALEX does not wait for com-
plete policy evaluation before returning to policy improve-
ment. In fact, only one episode of iterative policy evaluation
is required between each two policy improvement steps.

Algorithm 1 shows how ALEX alternates between policy
evaluation and policy improvement on an episode-by-episode
basis. While collecting feedback in an episode, policy evalu-
ation is done by estimating the action-value function Q(s, a)
(lines 11 to 22), the policy is then improved at all states vis-
ited in the episode by choosing the greedy action (line 25).
It is not required for the policy to always be greedy. How-
ever, it is required to move towards a greedy policy. This
will be proven to be sound in Section 5.

Algorithm 1 shows how policy improvement is done using
an ε-greedy policy. When ALEX starts, it chooses arbitrary
actions for new states visited for the first time or before the
first policy improvement cycle (lines 2 to 8). Lines 24 to 33

show how policy improvement takes place after an episode by
assigning the greedy action a probability of 1− ε while non-
greedy actions are assigned a probability ε

|A(s)| . This is to

ensure continuous exploration while at the same time mov-
ing towards a greedy policy. During the next episode, when
a state that exists in the policy is encountered, a greedy ac-
tion is taken with high probability, while other actions are
explored with low probability.

5. SOUNDNESS OF ALEX
In this section, we prove that: (1) Policy improvement

always yields a better policy unless the policy is already
optimal. (2) This property applies for the ε-greedy policy
used in ALEX.

The value function we discussed thus far is the action-
value function Qπ(s, a), which defines the expected return at
a state s when choosing an action a following some policy π.
Another value function, which we need in our proof, defines
the expected return, V π(s), for a state s under policy π:

V π(s) = Eπ {Rt|st = s}

= Eπ

{
T∑

k=t+1

rk|st = s

}
(9)

This value function is called the state-value function for
policy π. It defines the expected value given that ALEX fol-
lows policy π at state s. Similar to Equation 4, the value
function of state s can be represented as a recursive relation-
ship with the value function of the next state, s′ (derivation
in Appendix A):

V π(s) =
∑
a

π(s, a)
∑
s′

P ass′
[
Rass′ + V π(s′)

]
(10)

Also, similar to Equation 6, the optimality equation for
state value V ∗ is given by (derivation in Appendix A):

V ∗(s) = maxa∈A(s)

∑
s′

P ass′
[
Rass′ + V ∗(s′)

]
(11)

We now turn to proving that policy improvement always
yields a better policy. Our proof will use the state-value
function that we just defined. For ease of explanation, as-
sume that the policy is deterministic. However, the concepts
discussed here can be applied to probabilistic policies like the
one used by ALEX.

The approach to proving that policy improvement always
yields a better policy can be illustrated with an example:
Assume that the policy currently being used is π, and that
for some state s we want to change the policy to choose
an action π′(s) = a 6= π(s). The value of the state given
that we follow policy π is given by V π(s). The question is
whether it would be better or worse to change the policy so
that it always chooses a at state s. The value of choosing
a at s and then continuing for future states following the
original policy π can be given by:

Qπ(s, a) = Eπ {rt+1 + V π(st+1)|st = s, at = a}

=
∑
s′

P ass′
[
Rass′ + V π(s′)

] (12)

If it turns out that following policy π′ only at state s (i.e.,
choosing action a), and then following policy π for future
states gives greater state-value than the value of the state
when following policy π, this situation can be represented
by the following inequality:

Qπ(s, π′(s)) ≥ V π(s) (13)

We want to show that if Equation 13 holds, then always
following policy π′ at state s yields a greater value than



following policy π. That is, we want to prove that

V π
′
(s) ≥ V π(s) (14)

This can be proved by starting from Equation 13 and ex-
panding Qπ(s, π′(s)) using Equation 12. The proof is pre-
sented in Appendix A.

So far, we have shown that we can evaluate how a change
in the policy at a single state to a particular action affects
the state-value of this state, given the policy and the evalua-
tion function. Greedily choosing a policy that increases the
action-value function at state s improves the overall policy.
This reasoning can be extended to all states and all possi-
ble actions by selecting the action a that yields the highest
Qπ(s, a) at each state s. This is the greedy policy π′ defined
by:

π′(s) = argmaxaQ
π(s, a)

= argmaxaE {rt+1 + V π(st+1)|st = s, at = a}

= argmaxa
∑
s′

P ass′
[
Rass′ + V π(s′)

] (15)

Thus far, we proved that a greedy policy π′ is as good as,
or better than, an arbitrary policy π. Now, if we assume
that the greedy policy π′ is as good as, but not better than,

policy π (i.e.,V π
′

= V π), we get:

V π
′
(s) = maxaE

{
rt+1 + V π

′
(st+1)|st = s, at = a

}
= maxa

∑
s′

P ass′
[
Rass′ + V π

′
(s′)
] (16)

This equation is the same as the optimality Equation 11.

Thus, V π
′

must be V ∗, and π and π′ must be the optimal
policies. This means that policy improvement must give a
better policy unless the policy is already optimal. This also
proves Equation 8 because each πk+1 is uniformly better
than πk, or equal to it if both are optimal policies:

Qπk (s, πk+1(s)) ≥ Qπk (s, πk(s))

≥ V πk (s)
(17)

To show that policy improvement applies for the ε-greedy
probabilistic policy used by ALEX, let π′ be the ε-greedy pol-
icy. We show in Appendix A that:

Qπ(s, π′(s)) ≥ V π(s) (18)

Equation 18 shows that policy improvement is sound for the
ε-greedy policy. Using a greedy policy guarantees improve-
ment on every step except when an optimal policy is reached.
This analysis is independent of how the action-value func-
tions are determined at each iteration.

6. OPTIMIZATIONS TO ALEX
In this section, we describe some optimizations to improve

execution time and reduce the number of iterations required
for the convergence of ALEX.

6.1 Filtering to Reduce the Search Space
ALEX searches in the space of all possible links between

entities in the two data sets. It is computationally expensive
to: (1) Construct the space of feature sets for each pair of
entities from both data sets. (2) Search for candidate links
in this space. It is important to reduce the search space to
eliminate unlikely links since the number of correct links is
considerably small compared to the number of all possible
links.

When computing a value for a feature (i.e., a similarity
score between two objects associated with two predicates),
we require the value to pass a certain threshold θ. Feature

values less than θ are set to zero. Feature sets that do not
have any positive values are dropped. In our experiments,
we use θ = 0.3.

6.2 Partitioning the Search Space
The search conducted by ALEX in the space of possible

links can be parallelized by partitioning the space into inde-
pendent partitions that do not require communication. In
order to achieve this, we partition the larger data set and
generate feature sets between each partition and all entities
in the smaller data set. Assume the first data set Ds1 is
larger than the second data set Ds2. We partition Ds1 into
{Ds11 ∪ Ds12 ∪ · · · ∪ Ds1n}. Feature sets are generated
for each pair {(Ds11, Ds2), (Ds12, Ds2), · · · , (Ds1n, Ds2)}.
Feedback can then be directed to all partitions so that ALEX
can take actions and explore new links in the partition. The
different partitions can be independently explored in paral-
lel, either on different CPU cores of the same machine or on
multiple machines in a distributed setting.
ALEX uses a simple partitioning technique that we call

equal-size partitioning. Equal-size partitioning divides the
larger data set into equal-sized partitions in a round-robin
fashion. That is, the ith entity is in partition i mod n,
where n is the number of partitions. Equal-size partitioning
enables parallelism that significantly reduces execution time
without sacrificing the quality of candidate links.

6.3 Optimizations for Fast Convergence
ALEX’s actions (exploring links that did not exist in the set

of candidate links) lead to fast improvement in recall. How-
ever, ALEX can also generate incorrect links, which reduces
precision. Negative feedback would eventually correct these
errors by removing incorrect links. Based on negative feed-
back, ALEX learns that some action resulted in worse returns.
During policy improvement, ALEX would change the policy so
that this action is chosen only with small probability. How-
ever, relying only on policy improvement to remove incorrect
links may result in slow convergence. In order to speed up
convergence we develop two optimizations that improve pre-
cision without waiting for policy improvement: blacklist and
rollback.

Blacklist: When negative feedback is received over a link,
it is now known that the link is incorrect, so it is added to a
list of incorrect links. The blacklist is used to prevent links
that are known to be incorrect from being returned by ALEX

when exploring links at any state in the future.
Rollback: The probabilistic nature of the ε-greedy policy

used by ALEX allows it to choose incorrect actions at any
state to learn how to make better choices when choosing
future actions. Some actions may result in the discovery of
a large number of incorrect links. When this happens, it
is a wise choice to rollback and remove the links generated
by such actions. ALEX traces feedback on links to know by
which state-action pair these links were generated. When a
sufficient number of negative feedback items is received over
links generated by a specific state-action pair, a rollback
process is initiated, and all links generated by this state-
action pair are removed. However, links removed without
being marked with negative feedback are not added to the
blacklist since they may include some correct links. These
links can be discovered later by another state-action pair
with a better average return.



Data Set Version Field Triples
DBpedia 3.5.1 Multi-domain 43.6M
OpenCyc 4.0 Multi-domain 1.6M
NYTimes 2010-01-13 Media 335K
Drugbank 2010-11-25 Life Sciences 767K
Lexvo 2013-02-09 Linguistics 715K
Semantic Web
Dogfood

2014-05-29 Publications 337K

DBpedia (NBA) 3.5.1 Basketball
Players

56K

OpenCyc (NBA) 4.0 Basketball
Players

726

Table 1: Data sets used in the experiments.

The rollback optimization is particularly useful for han-
dling incorrect feedback due to errors in the data or errors
by the user. It may be possible to refine the feedback so that
ALEX uses only high quality feedback obtained from a large
number of users (e.g., using techniques from [16]). However,
we should never expect feedback to be 100% correct, re-
gardless of the measures taken to improve its quality. When
incorrect feedback is received by ALEX, it will take an action
that can be rolled-back if future feedback contradicts the in-
correct feedback. A study of the effect of incorrect feedback
is presented in Appendix C.

7. EXPERIMENTAL EVALUATION

7.1 Experimental Setup
Data sets: We use the real data sets shown in Table 1.

DBpedia contains structured data extracted from Wikipedia,
and OpenCyc8 contains parts of the Cyc knowledge base of
everyday knowledge. Both of these data sets cover multiple
domains, and are in the center of the Linked Open Data
cloud, with many links to other data sets. Each of our ex-
periments aims to link one of these two data sets with one
of the other data sets in Table 1, which are from different
domains. NYTimes contains data about locations, people,
and organizations. Lexvo9 contains data about human lan-
guages. Semantic Web Dogfood contains data about confer-
ences and workshops about the Semantic Web. Two subsets
of the DBpedia and OpenCyc about NBA basketball players
are extracted to evaluate ALEX in more domain-specific sit-
uations. In our experiments, we use the versions the of DB-
pedia, NYTimes, and Drugbank data sets from FedBench10,
a benchmark suite to test the efficiency of federated query
processing systems, and we use OpenCyc and Lexvo from
the Linked Open Data cloud.

Initial Set of Links: We use PARIS [21] as the au-
tomatic linking algorithm for generating the initial set of
candidate links for ALEX. We chose PARIS because it was
shown to outperform other techniques, and it is not domain
specific. PARIS produces links where each link is associ-
ated with a score. In order to find better quality links from
PARIS, we only consider links with score greater than 0.95.
Lowering this threshold does not improve the recall value,
but it lowers the precision.

8http://sw.opencyc.org/downloads/opencyc_owl_
downloads/opencyc-latest.owl.gz
9http://www.lexvo.org/resources/lexvo_latest.rdf.
gz

10http://fedbench.fluidops.net/

Ground Truth: The data sets that we use are part of
the Linked Open Data cloud, which means that they are
already linked. Some of the data sets are manually linked.
Others are linked automatically and refined manually by
human experts. We remove all existing links between the
data sets and use them as our ground truth. In addition, we
randomly inspect samples from the ground truth to remove
any incorrect links. We then run PARIS over the pair of data
sets to be linked to discover candidate links, which ALEX uses
as initial candidate links. We manually inspect the initial
candidate links generated by PARIS to find correct links
that do not exist in the ground truth. If we find any such
links, we add them to the ground truth.

Generating Feedback: We randomly choose a link out
of the set of candidate links and compare it to the ground
truth. If the link exists in the ground truth, a positive feed-
back item is returned to ALEX. If the link is incorrect (i.e.,
does not exist in the ground truth), a negative feedback item
is returned.

Evaluation Metrics: We evaluate the efficiency of ALEX
by comparing the candidate links it generates to the ground
truth. We perform this comparison after each policy evalu-
ation - policy improvement iteration, i.e., after each episode
of feedback. We evaluate the quality of candidate links us-

ing precision P = |C∩G|
|C| , recall R = |C∩G|

|G| , and F-measure

F = 2PR
P+R

, where C is the set of candidate links after each
episode, and G is the ground truth.

We also measure the execution time that ALEX requires
to converge. The execution time includes the exploration
of new candidate links and improving the policy after each
episode.

Default Settings: The step size in ALEX is the offset
away from the feature score that ALEX searches around. For
example, if a feature has a score of 0.8 and the step size
is 0.05, ALEX will find links whose feature score is in the
range [0.75, 0.85]. The default value of the step size is 0.05.
The episode size is the number of feedback items collected
before starting policy improvement. The default episode size
is 1000. All our experiments use equal-size partitioning to
partition the space of feature sets into 27 partitions.

Execution Environment: ALEX is implemented in Java.
We ran our experiments on a shared server running Linux
Ubuntu 12.04.3 with 64 AMD Opteron processors at 2.6 GHz
and 256 GB of memory. Our memory usage for the largest
data sets never exceeded 30 GB.

Section 7.2 evaluates the quality of the links discovered by
ALEX, and Section 7.3 evaluates the efficiency of ALEX and
the effect of the optimizations it employs.

7.2 Quality of Links
We envision ALEX being used in one of two settings:

1. Batch Mode: A service provider can give users the ability
to query multiple, large linked RDF data sets. In this set-
ting, the service provider collects feedback from many users
over a large number of links between different parts of the
data sets. ALEX applies the feedback in batches, using a large
episode size, in order to ensure that there is sufficient feed-
back over different parts of the data sets. In this setting, we
use the default episode size of 1000 (e.g., 1000 users provid-
ing 1 feedback item each). 2. Specific Domains: Individual
users can develop applications that target more specific do-
mains, either small data sets or subsets of large data sets.
The user feedback is focused on a specific domain (e.g., a

http://sw.opencyc.org/downloads/opencyc_owl_downloads/opencyc-latest.owl.gz
http://sw.opencyc.org/downloads/opencyc_owl_downloads/opencyc-latest.owl.gz
http://www.lexvo.org/resources/lexvo_latest.rdf.gz
http://www.lexvo.org/resources/lexvo_latest.rdf.gz
http://fedbench.fluidops.net/
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(c) DBpedia - Lexvo

Figure 2: Quality of links between DBpedia and NYTimes, Drugbank, and Lexvo.
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(b) OpenCyc - Drugbank
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(c) OpenCyc - Lexvo

Figure 3: Quality of links between OpenCyc and NYTimes, Drugbank, and Lexvo.

small part of the DBpedia data set), and she expects to see
quick improvement in link quality based on her feedback. In
this setting, we use a small episode size of 10. We evalu-
ate the first setting in Section 7.2.1 and the second setting
in Section 7.2.2. In both settings, we use a strict rule for
convergence. ALEX stops when there is no change at all in
the set of candidate links between episodes. We also show
the episode at which fewer than 5% of the links change com-
pared to the previous episode. This can be used as a more
relaxed convergence rule.

7.2.1 ALEX in Batch Mode
Figure 2 shows how ALEX performs in batch mode on the

following pairs of data sets: DBpedia - NYTimes, DBpedia
- Drugbank, and DBpedia - Lexvo. Figure 2(a) shows the
quality of links between DBpedia and NYTimes after each
episode (i.e., iteration of policy evaluation - policy improve-
ment). The figure shows how the recall value is significantly
improved after the first episode from a low value of around
0.2 (i.e., most ground truth links are not included) to almost
0.9. This means that a large number of links have been dis-
covered and added to the set of candidate links after only one
episode. In some iterations, the precision is hurt by adding
some incorrect links to the set of candidate links. However,
ALEX recovers fast and keeps improving both precision and
recall until it converges. The vertical green line in this and
subsequent figures shows the episode at which the number
of changed links from the previous episode is less than 5%.

This relaxed convergence happens after 7 episodes in this
experiment, while full convergence (i.e., no change in links)
happens after 14 episodes. A total of 7568 new links were
discovered by ALEX. The total number of links in the ground
truth is 10968.

While linking DBpedia and NYTimes demonstrates a case
in which PARIS is able to generate a set of initial candidate
links with relatively good precision but with bad recall, link-
ing DBpedia and Drugbank demonstrates a case in which the
initial candidate links have very good recall but bad preci-
sion. Figure 2(b) shows how ALEX performs in this case. The
figure shows that the automatically generated links have a
low starting precision value (less than 0.3), and high recall
value (over 0.95). ALEX is able to significantly improve the
precision value after three episodes. The recall value is also
improved. ALEX converges after 10 episodes in this exper-
iment (5 episodes with the relaxed condition), reaching an
F-measure of 0.99. The total number of links in the ground
truth for this pair of data sets is 1514. A total of 70 new
links were discovered by ALEX. This is a small number since
recall was already high. Most of the work done by ALEX is
in removing incorrect links.

Figure 2(c) shows a different case, where both precision
and recall have low values. The number of links in the
ground truth is 4364. A total of 3011 new links were dis-
covered by ALEX. The figure shows that ALEX significantly
improves the recall after the first episode and no longer im-
proves it after the second episode. However, it improves
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(c) DBpedia (NBA) - NY-
Times
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(d) OpenCyc (NBA) - NY-
Times

Figure 4: Quality of links for specific domains: publications and NBA basketball players.

the precision for 3 more episodes until it converges after 5
episodes (3 episodes with the relaxed condition).

The results of similar experiments using OpenCyc instead
of DBpedia are shown in Figure 3. ALEX performs as effec-
tively in these experiments as it did in Figure 2. The number
of ground truth links is 2965 for OpenCyc - NYTimes, 204
for OpenCyc - Drugbank, and 383 for OpenCyc - Lexvo.

7.2.2 ALEX for Specific Domains
In this section we investigate the performance of ALEX

in the single-user, specific domain setting. We use a small
episode size of 10 feedback items since users expect quick
improvement in this setting. Figure 4(a) shows the per-
formance of ALEX between DBpedia and the Semantic Web
Dogfood data set which has information about conferences
and workshops about the Semantic Web. The number of
ground truth links between DBpedia and Semantic Web
Dogfood is small (461), although the Semantic Web Dogfood
data set has more triples than the NYTimes data set. The
links mainly connect universities and technical companies
from both datasets. A total of 84 new links were discovered
by ALEX. Figure 4(a) shows that ALEX achieves very good
quality of links and converges in 2 episodes (i.e., significant
improvement after 10 feedback items, and full convergence
after 20).

Figure 4(b) shows a similar experiment, replacing DBpe-
dia with OpenCyc. In this case, there are 110 links in the
ground truth, and ALEX discovers 51 new links.

In addition, we extract data about NBA basketball play-
ers from DBpedia and OpenCyc to demonstrate another
domain-specific situation where an application is interested
in finding all news about NBA basketball players (active or
retired). Figures 4(c) and 4(d) show the results of this exper-
iment. There are 93 ground truth links in Figure 4(c), and
ALEX discovers 43 new links after one episode. The number
of ground truth links in Figure 4(d) is 35, and ALEX discovers
19 new links.

7.3 Efficiency of ALEX
In this section, we investigate the efficiency (i.e., running

time) of ALEX, and the effect of the different optimizations
to speed up convergence, which were described in Section 6.
For these experiments, we use the DBpedia and NYTimes
data sets. These data sets are challenging for ALEX since
they contain data from more heterogeneous domains than
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Figure 5: Comparing number of links: total possible
links vs. filtered search space vs. ground truth.

the rest of data sets. In addition, they are the data sets
for which PARIS was able to discover only a small fraction
of the links, as seen in Figure 2(a). This pair of data sets
also has the largest number of links between a multi-domain
data set and a data set from any other domain. Only the
two multi-domain data sets have more links between them,
and we use them to test efficiency in Appendix B.

Filtering to Reduce the Search Space: Figure 5(a)
shows the total number of links that can be generated be-
tween the first partition of the DBpedia data set and the
whole data set of NYTimes, compared to the number of
links after filtering using a threshold θ = 0.3. The figure
shows that filtering reduces the search space by 95%.

Figure 5(b) shows the number of filtered links compared
to number of the ground truth links that can be generated
out of this partition. The figure shows that ground truth
represents only 0.2% of the filtered links, demonstrating the
efficiency of ALEX, which is able to discover correct links in
such a large space.

Blacklist: Figure 6 shows a comparison between ALEX

with and without the blacklist optimization. Figure 6(a)
shows that using a blacklist gives a slight improvement in
F-measure over not using it. However, Figure 6(b) shows
that using a blacklist significantly decreases the fraction of
negative feedback, which the user provides on incorrect links
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Figure 7: Effect of rollback: (a) quality without rollback, (b) a partition that converges, and (c) a partition
that does not converge.
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Figure 6: Effect of the blacklist: (a) F-measure, and
(b) negative feedback.

between the data sets. Using a blacklist does not affect
the execution time of ALEX. Intuitively, a black list is useful
because when a user provides negative feedback on a link
she should not need to provide this feedback again.

Rollback: ALEX learns by interacting with the environ-
ment. This means that it can sometimes make wrong de-
cisions. These wrong decisions can result in exploring a
large number of incorrect candidate links, significantly re-
ducing the quality of the discovered links. If rollback is
not used, ALEX can recover from wrong decisions only very
slowly. Figure 7 shows the importance of the rollback opti-
mization. Figure 7(a) shows the quality measures of ALEX

without using the rollback optimization. This figure should
be contrasted to Figure 2(a), which shows ALEX with rollback
(the default). The figure shows that after the first episode,
precision drops to a very low value. The figure also shows
that it is hard to recover from the wrong decisions made
during the first episode. After 100 episodes, which is the
maximum number of iterations allowed by ALEX, precision
is a little over 0.3. Figure 7(a) shows the overall quality of
all partitions. If we examine partitions independently, we
find that some partitions are able to recover from wrong
decisions made by ALEX, while others are not. Figure 7(b)
shows an example of a partition that is able to recover from
the wrong decisions and converges in 40 episodes. The same

partition converges in 7 episodes when rollback is applied.
However, another partition, shown in Figure 7(c), cannot
recover from wrong decisions.

Execution Time: In the experiment with DBpedia and
NYTimes shown in Figure 2(a), ALEX finishes execution in
97 minutes, which is the execution time of the slowest par-
tition. This is approximately 7 minutes per episode. The
average execution time of all partitions is approximately 64
minutes. In the specific domain experiment shown in Fig-
ure 4(c), ALEX finishes in approximately 4 seconds. This is
approximately 1.3 second per episode (10 feedback items).
The faster convergence in the specific domain setting is be-
cause the data sets and the amount of feedback are smaller.
Thus, in batch mode ALEX takes a few minutes per episode,
while in interactive mode it takes a few seconds. We consider
this to be acceptable efficiency.

Additional experiments are presented in the appendices.
We study the efficiency of ALEX when linking the multi-
domain data sets in Appendix B. We demonstrate that ALEX
can recover from incorrect feedback in Appendix C. And we
demonstrate that ALEX is not overly sensitive to parameter
values in Appendix D.

8. CONCLUSION AND FUTURE WORK
In this paper, we presented ALEX, a system that utilizes

user feedback on queries over linked data to remove incorrect
links and discover new links that did not exist between the
data sets. When a user provides positive feedback on a link,
ALEX finds new links that are similar to this link. This ex-
ploration is conducted by taking one pair of attributes from
the two data sets and exploring around the similarity value
between these two attributes. ALEX uses a probabilistic pol-
icy to choose the attributes to explore around. This policy
is learned and improved using a Monte Carlo reinforcement
learning approach. Using this approach, ALEX learns how to
find new links as the user continues giving feedback on query
answers. ALEX uses several optimizations to speed up con-
vergence. Our experiments with real world data sets show
the effectiveness and efficiency of ALEX.

An important direction for future work is confirming the
effectiveness of ALEX through user studies using real appli-
cations on the Linked Open Data cloud. In such studies,
users are likely to generate some incorrect feedback, which
should enable us to validate the robustness of ALEX beyond
our current set of experiments.
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APPENDIX
A. DERIVATIONS AND PROOFS

A.1 State Value Function (Equation 10)

V π(s) = Eπ

{
T∑

k=t+1

rk|st = s

}

= Eπ

{
rt+1 +

T∑
k=t+2

rk|st = s

}

=
∑
a

π(s, a)
∑
s′

P ass′

[
Rass′ + Eπ

{
T∑

k=t+2

rk|st+1 = s′
}]

=
∑
a

π(s, a)
∑
s′

P ass′
[
Rass′ + V π(s′)

]
A.2 Optimal Value Function (Equation 11)

V ∗(s) = maxaQ
π∗(s, a)

= maxaEπ∗ {Rt|st = s, at = a}

= maxa∈A(s)Eπ∗

{
T∑

k=t+1

rk|st = s, at = a

}

= maxa∈A(s)Eπ∗

{
rt+1 +

T∑
k=t+2

rk|st = s, at = a

}
= maxa∈A(s)Eπ∗ {rt+1 + V ∗(st+1)|st = s, at = a}

= maxa∈A(s)

∑
s′

P ass′
[
Rass′ + V ∗(s′)

]
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Figure 8: Quality of links between the two largest
data sets: DBpedia and OpenCyc.

A.3 Policy Improvement Proof (Equation 14)

V π(s) ≤ Qπ(s, π′(s))

V π(s) ≤ Eπ′ {rt+1 + V π(st+1)|st = s}
V π(s) ≤ Eπ′

{
rt+1 +Qπ(st+1, π

′(st+1))|st = s
}

V π(s) ≤ Eπ′ {rt+1 + Eπ′{rt+2 + V π(st+2)}|st = s}
V π(s) ≤ Eπ′ {rt+1 + rt+2 + V π(st+2)|st = s}
V π(s) ≤ Eπ′ {rt+1 + rt+2 + rt+3 + V π(st+3)|st = s}

V π(s) ≤ V π
′
(s)

A.4 Proof of Improvement Using the ε-greedy
Policy (Equation 18)

Qπ(s, π′(s)) =
∑
a

π′(s, a)Qπ(s, a)

=
ε

|A(s)|
∑
a

Qπ(s, a) + (1− ε)maxaQπ(s, a)

≥ ε

|A(s)|
∑
a

Qπ(s, a) + (1− ε)
∑
a

π(s, a)− ε
|A(s)|

1− ε Qπ(s, a)

The transition from the equality to the inequality is because
the sum of the second term is the weighted average with non-

negative weights summing to one (
∑
a

π(s,a)− ε
|A(s)|

1−ε ), and
therefore must be less than or equal to the largest number
averaged (maxaQ

π(s, a)).

Qπ(s, π′(s)) ≥ ε

|A(s)|
∑
a

Qπ(s, a) +
∑
a

π(s, a)Qπ(s, a)

− ε

|A(s)|
∑
a

Qπ(s, a)

Qπ(s, π′(s)) ≥
∑
a

π(s, a)Qπ(s, a)

Qπ(s, π′(s)) ≥ V π(s)

B. LINKING THE TWO MULTI-DOMAIN
DATA SETS

We stress-test ALEX by using it to link the two multi-
domain data sets in our experiments (DBpedia and Open-
Cyc), using the default episode size of 1000. Linking these
two data sets is challenging because they are the largest in
our experiments. Furthermore, they span multiple semanti-
cally diverse domains so they use a large number of labels
for their predicates, and hence generate a large number of

features. There are 41039 links between the two data sets
in the ground truth, the largest in our experiments. Fig-
ure 8 shows that ALEX converges after 20 episodes with an
F-measure greater than 0.9 (7 episodes with the relaxed con-
dition). ALEX started with 12227 correct candidate links ob-
tained from PARIS, and discovered 23476 additional correct
links.

C. EFFECT OF INCORRECT FEEDBACK
In this paper, we assume that user feedback is always cor-

rect. However, in real-life scenarios, users may not agree
on the correctness of query answers. Therefore, incorrect
feedback items may be encountered. In order to evaluate
ALEX in this context, we generate random incorrect feed-
back items such that 10% of the feedback items received by
ALEX are incorrect. We evaluate ALEX with 10% incorrect
feedback on the DBpedia - NYTimes data sets, using the
default episode size of 1000. Figure 9 shows the precision,
recall, and F-measure for ALEX with 10% incorrect feedback,
and the corresponding values when all feedback is correct
(from Figure 2(a)). The recall value in Figure 9(b) does not
vary much, demonstrating that the reinforcement learning
techniques used in ALEX to improve recall are robust to in-
correct feedback. The precision values shown in Figure 9(a)
are slightly worse when there is incorrect feedback, and this
also affects the F-measure in Figure 9(c). ALEX improves
precision by removing incorrect links from the set of can-
didate links, and these incorrect links can be removed only
when negative feedback is received over them. When there
is incorrect feedback, a constant stream of positive feedback
is received over incorrect links, so these incorrect links stay
in the set of candidate links. Nevertheless, the degradation
in precision is relatively small, and ALEX is able to produce
good results even in the presence of incorrect feedback.

D. SENSITIVITY OF ALEX
We use the DBpedia - NYTimes data sets to test the sen-

sitivity of ALEX to the step size and episode size parameters.
Step Size: In this experiment, we use the default episode

size of 1000, and we vary the step size. Changing the step
size slightly affects how ALEX performs. Increasing the step
size means that we expand the search area around the fea-
ture score chosen by the current policy at the current state.
Decreasing the step size means that we narrow it. Figure 10
shows ALEX with step sizes 0.01, 0.05 (default), and 0.1.
Figure 10(a) shows that the F-measure does not vary sig-
nificantly with higher step size, getting slightly better. Fig-
ure 10(b) gives a deeper insight by showing the variance in
recall, where the gap between different step sizes is more
obvious. The figure shows how increasing the search area
around feature score results in more correct links being dis-
covered. Precision is not reported because it has a trend
similar to that of Figure 2(a).

However, increasing the search area does not come for free.
The total execution time is determined by the partition that
finishes last. ALEX with a step size of 0.1 has much higher
execution time than with a step size of 0.05 or 0.1. The last
partition to finish for step size 0.1 takes over 210 minutes,
whereas it takes 97 minutes for a step size of 0.05 and 89
minutes for a step size of 0.01.

Another drawback of increasing the step size is that ALEX
will discover more incorrect links in the search area. This is
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Figure 9: ALEX with correct feedback and with 10% incorrect feedback.
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Figure 10: ALEX with different step sizes: (a) F-measure, (b) recall, and (c) negative feedback.
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Figure 11: F-measure for ALEX with different episode
sizes.

reflected directly in the number of negative feedback items
received from the user. Figure 10(c) shows the percentage
of feedback received in every episode that is negative. This
negative feedback is caused by incorrect links. The figure
shows this value for the first 10 episodes for different step
sizes. The figure shows that during the first episode, ALEX
with a step size of 0.1 receive almost 35% negative feedback
of the 1000 feedback items in the episode, compared to less
than 30% for a step size of 0.05 and a little over 20% for 0.01.

For later episodes, ALEX improves its policy and learns to
take better actions. This reduces the percentage of negative
feedback. However, the trend that a bigger step size results
in a larger percent of negative feedback continues.

Episode Size: Like changing the step size, changing
the episode size slightly affects the quality of the discov-
ered links. Figure 11 shows a comparison of ALEX using an
episode size of 500, 1000 (default), and 1500. During each
episode, policy evaluation uses the current policy to take ac-
tion after every feedback item. At the end of an episode, the
policy is improved for the next episode. Figure 11 shows the
F-measure for the three episode sizes. The F-measures are
very close to each other, with episode sizes 1000 and 1500
slightly outperforming episode size 500. A larger episode size
results in ALEX taking fewer episodes to converge, since each
episode has more feedback. ALEX converges in 26, 14, and 13
episodes for episode size 500, 1000, and 1500, respectively.

The experiments in this appendix show that ALEX is sensi-
tive to changes in the values of its parameters. That is, the
parameters have a noticeable effect on performance. How-
ever, the sensitivity is not so high as to make ALEX unstable
and reliant on highly accurate parameter settings: the differ-
ence between the best case and the worst case performance
is not too high, and reasonable choices of parameter values
work well.
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