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ABSTRACT

In this paper, we consider a 4G wireless network in which
a number of 3D videos represented in two-view plus depth
format and encoded using scalable video coders are multi-
casted to a group of users. We formulate the optimal 3D
video multicasting problem to maximize the quality of ren-
dered virtual views on the receivers’ displays. We show that
this problem is NP-Complete and present a polynomial time
approximation algorithm to solve it. Our simulation-based
experimental results show that our algorithm provides solu-
tions which are within 0.3 dB of the optimal solutions while
satisfying real-time requirements of multicast systems.

1. INTRODUCTION
Multicasting multiple video streams over wireless broad-

band access networks enables the delivery of multimedia
content to large-scale user communities in a cost-efficient
manner. Three dimensional (3-D) videos are the next nat-
ural step in the evolution of digital media technologies. We
address the problem of maximizing the video quality of ren-
dered views in auto-stereoscopic displays [1], [2] for mobile
receivers such as smartphones and tablets. Auto-stereoscopic
displays provide 3D perception without the need for special
glasses. For such displays, 3D scenes need to be efficiently
represented using a small amount of data that can be used
to generate arbitrary views not captured during the acquisi-
tion process. Given the limitations on the wireless channel
capacity, it is important to efficiently utilize the channel
bandwidth such that the quality of all rendered views at the
receiver side is maximized.
We consider multicasting multiview video streams in which

the textures and depth maps of the views are independently
coded using the scalable video coding extension of H.264/AVC.
We perform joint texture-depth rate-distortion optimized
substream extraction in order to minimize the distortion in
the views rendered at receivers. We propose a substream se-
lection scheme that enables receivers to render the best pos-
sible quality for all views given the bandwidth constraints
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of the transmission channel and the variable nature of the
video bit rate. We conduct experiments using 24 3D video
segments from the MPEG 3DV ad-hoc group data set. The
performance of the proposed algorithm is compared against
best possible results represented by the optimal solution of
the problem. Our results show that the proposed algorithm
produces near optimal results and terminates in a few mil-
liseconds.

The rest of this paper is organized as follows. In Sec-
tion 2, we provide a brief background on 3D display tech-
nologies and representation formats, and the concept of scal-
able video coding. Section 3 summarizes the related work in
the literature. We state the optimal 3D video multicasting
problem and describe the proposed algorithm to solve the
problem in Section 4. We present our experimental evalua-
tion in Section 5, and we conclude the paper in Section 6.

2. BACKGROUND
Autostereoscopic displays. Autostereoscopic displays

relief the viewer from the discomfort of wearing specialized
glasses by dividing the viewing space into a finite number
of viewing slots where only one image (view) of the scene
is visible. Each of the viewer’s eyes sees a different image,
and those images change as the viewer moves or changes
his head position. Two-view autostereoscopic displays di-
vide the horizontal resolution of the display into two sets.
The two displayed images are visible in multiple zones in
space. To prevent incorrect pseudoscopic viewing, multi-
view autostereoscopic displays increase the number of dis-
played views. Thus, they have the advantage of allowing
viewers to perceive a 3D image when the eyes are anywhere
within the viewing zone [1]. This enables multiple viewers
to see the 3D objects from their own point of view, which
makes these displays more suitable for applications such as
computer games, home entertainment, and advertising.

3D Video Representation. Multiview 3D videos can
be represented explicitly or implicitly. In an explicit rep-
resentation, all possible views are either coded separately
(simulcast coding) or jointly using multiview coding [3]. Us-
ing only texture information to drive multiview displays re-
quires transmitting large amounts of data which can exceed
the network capacity. Implicit representations overcome this
by transmitting scene geometry information, such as depth
maps, along with the texture data. This is known as the
video-plus-depth (V+D) representation [4]. Given the scene
geometry information, a high quality view synthesis tech-
nique such as depth image-based rendering (DIBR) [5] can
generate any number of views, within a given range, using

43



a fixed number of received views as input. Rendering a vir-
tual view from a single reference view and its associated
depth map stream suffers from the disocclusion or exposure
problem, where some regions in the virtual view have no
mapping because they were invisible in the reference view.
These regions are known as holes and are interpolated from
surrounding areas using a filling algorithm. The disocclu-
sion effect increases as the angular distance between the ref-
erence view and the virtual view increases. Virtual views
may be synthesized more correctly if two or more reference
views, from both sides of the virtual view, are used [6]. This
is possible because areas which are occluded in one of the
reference views will not be occluded in the other one.
Scalable Video Coding. In this paper we assume that

the 3D video content is represented using multiple texture
video streams, captured from different viewpoints of the
scene, and their respective depth map streams. The streams
are simulcast coded in order to support real-time service. We
leverage scalable video coders (SVCs) that encode video con-
tent into multiple layers [7]. These scalable coded streams
can then be transmitted and decoded at various bit rates.
This can be achieved using an extractor that adapts the
stream for the target rate and/or resolutions. The extractor
can either be at the streaming server side, at a network node
between the sender and the receiver, or at the receiver-side.
In the context of this paper, the base station in a wireless
video broadcasting service will be responsible for extract-
ing the substreams to be transmitted. Each extracted sub-
stream can be rendered at a lower quality than the original
(complete) stream.

3. RELATEDWORK
Liu et al. [8] propose a distortion model to characterize

the view synthesis quality without requiring the original ref-
erence image. In this model, the distortion of a synthesized
view is composed of video coding-induced distortion, depth
quantization-induced distortion, and inherent geometry dis-
tortion. The practicality of the presented model is however
restricted due to its high complexity. Yuan et al. [9] propose
an alternative and concise low-complexity distortion model
for the synthesized view. Kim et al. [10] also attempt to
overcome the no-reference evaluation problem when coding
depth maps by approximating the rendered view distortion
from the reference texture video that belongs to the same
viewpoint as the depth map. However, the model does not
jointly consider both texture and depth map distortions. For
our work, we validate the model relation presented in [9] and
use it to solve the multiple 3D video multicasting problem.
The works most related to ours are [11] and [12]. In

[11], Petrovic et al. perform virtual view adaptation for
selective streaming of 3D multiview video. However, the
proposed adaptation scheme requires empirically construct-
ing the rate-distortion function for the 3D multiview video.
Moreover, exhaustively searching the space of possible quan-
tizers can be computationally expensive. In [12], Cheung
et al. address the problem of selecting the best views to
transmit and determining the optimal bit allocation among
texture and depth maps of the selected views, such that the
visual distortion of synthesized views at the receiver is mini-
mized. Contrary to our work, the bit allocation optimization
problem presented in [12] is applicable in scenarios where
the selected views are encoded on-the-fly and the coding pa-
rameters can be adjusted based on the available bandwidth.

Coding 3D videos in real-time is however challenging. Our
work assumes that the views are pre-encoded using scalable
video coders and bit rate adaptation is performed via sub-
stream extraction, which is expected to be the common case
in practice due to the flexibility it provides.

4. PROBLEMFORMULATIONANDSOLU-

TION

4.1 Problem Formulation
We consider a wireless multicast/broadcast service in 4G

wireless networks, such as evolved multicast broadcast mul-
timedia services (eMBMS) in LTE networks and multicast
broadcast service (MBS) in WiMAX, streaming multiple 3D
videos in MVD2 representation. MVD2 is a multiview-plus-
depth (MVD) representation in which there are only two
views. Therefore, two video streams are transmitted along
with their depth map streams. Each texture/depth stream
is encoded using a scalable encoder into multiple quality lay-
ers. Time is divided into a number of scheduling windows of
equal duration δ, i.e., each window contains the same num-
ber of time division duplex (TDD) frames. The base station
allocates a fixed-size data area in the downlink subframe
of each TDD frame. In the case of multicast applications,
the parameters of the physical layer, e.g., signal modulation
and transmission power, are fixed for all receivers. These
parameters are chosen to ensure an average level of bit error
rate for all receivers in the coverage area of the base sta-
tion. Thus, each frame transmits a fixed amount of data
within its multicast area. In the following, we assume that
the entire frame is used for multicast data and we refer to
the multicast area within a frame as a multicast block.
The symbols used in the following formulation are listed in

Table 1. Assuming there are S multiview-plus-depth video
streams where two reference views are picked for transmis-
sion from each video. All the videos are to be multiplexed
over a single channel. If each view is encoded into multi-
ple layers, then at each scheduling window, the base station
needs to determine which substreams to extract for every
view pair of each of the S streams. Let R be the current
maximum bit rate of the transmission channel. For each
3D video, we have four encoded video streams representing
the two reference streams and their associated depth map
streams. We assume an equal number of layers for left and
right texture streams, as well as for the left and right depth
streams. Moreover, corresponding layers in the left and right
streams are encoded using the same quantization parameter
(QP). This enables us to treat corresponding layers in the
left and right texture streams as a single item with a weight
(cost) equal to the sum of the two rates and a representa-
tive quality equal to the average of the two qualities. The
same also applies for left and right depth streams. Let L
be the number of layers for each stream. Thus, for each
stream, we have L substreams to choose from, where sub-
stream l includes layer l and all layers below it. Let the data
rates and quality values for selecting substream l of stream s
be rsl and qsl, respectively, where l = 1, 2, ..., L. For exam-
ple, q32 denotes the quality value for first enhancement layer
substream of the third video stream. These values may be
provided as separate metadata. Alternatively, if the scalable
video is encoded using H.264/SVC [7] and the base station
is media-aware, this information can be obtained directly
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Table 1: List of Symbols Used in this Paper.
Symbol Description

S Number of 3D video streams
I Number of synthesized intermediate views
L Number of layers per view
qtsl Average PSNR of left and right texture substream sl
qdsl Average PSNR of left and right depth substream sl
rtsl Sum of left and right texture substream sl data rates
rdsl Sum of left and right depth substream sl data rates
btsl Number of blocks required for texture substream sl
bdsl Number of blocks required for depth substream sl
δ Duration of the scheduling window
αi
s Quality model parameter for intermediate view i of video s

βi
s Quality model parameter for intermediate view i of video s

from the encoded video stream itself using the Supplemen-
tary Enhancement Information (SEI) messages.
Let I be the set of possible intermediate views which can

be synthesized at the receiver for a given 3D video. The
goal is to maximize the average quality over all i ∈ I and
all s ∈ S. Thus, we have the problem of choosing the sub-
streams such that the average quality of the intermediate
synthesized views between the two reference views is max-
imized, given the constraint that the total bit rate of the
chosen substreams does not exceed the current channel ca-
pacity. Let xsl be binary variables that take the value of 1
if substream l of stream s is selected for transmission, and
0 otherwise. We denote with superscripts t and d the tex-
ture and depth streams, respectively. If the capacity of the
scheduling window is C and the size of each TDD frame
is F , then the total number of frames within a window is
P = C/F . The data to be transmitted for each substream
can thus be divided into blocks of size bsl = �rsl · δ/F �. We
use a recent linear virtual view distortion model presented in
[9] to represent the quality of the synthesized view in terms
of the qualities of reference views. Based on this model, the
quality of a virtual view can be approximated by a linear
surface in the form given in Eq. (1), where Qv is the average
quality of the synthesized views, Qt is the average quality
of the left and right texture references, Qd is the average
quality of the left and right references depth maps, and α,
β, and C are model parameters. The model parameters
can be obtained by either solving three equations with three
combinations of Qv, Qt, and Qd, or more accurately using
regression by performing linear surface fitting, e.g., using
MATLAB’s Surface Fitting Toolbox.

Qv = αQt + βQd + C. (1)

We have experimentally validated this relation using both
the luminance component Peak Signal to Noise Ratio (Y-
PSNR) and structural similarity (SSIM) [13] video quality
metrics. Details are omitted due to space limitations. We
now have the optimization problem (P1). In this formula-
tion, constraint (P1a) ensures that the chosen substreams
do not exceed the transmission channel’s bandwidth. Con-
straints (P1b) and (P1c) enforce that only one substream
is selected from the texture references and one substream
from the depth references, respectively. It can be seen that
the substream selection problem is equivalent to the Mul-
tiple Choice Knapsack Problem (MCKP), which is known
to be NP-Complete [14]. The substream selection problem
can be mapped to the MCKP in polynomial time as follows.
The texture/depth streams of the reference views of each 3D
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Figure 1: Calculating profits and costs for texture
component substreams of the reference views.

video represent a multiple choice class in the MCKP. Sub-
streams of these texture/depth reference streams represent
items in the class. The average quality of the texture/depth
reference views substreams represent the profit of choosing
an item and the sum of their data rates represents the weight
of the item. Figure 1 demonstrates this mapping for the
texture component of video s in a set of 3D videos, where
both the texture and the depth streams are encoded into 4
layers. The 3D video is represented by two classes in the
MCKP, one for the texture streams and one for the depth
map streams. Finally, by making the scheduling window
capacity the knapsack capacity, we have a MCKP instance.

Maximize
1

S

∑

s∈S

1

I

∑

i∈I

(

αi
s

L
∑

l=1

xt
slq

t
sl + βi

s

L
∑

l=1

xd
slq

d
sl

)

(P1)

such that

S
∑

s=1

(

L
∑

l=1

xt
slb

t
sl +

L
∑

l=1

xd
slb

d
sl

)

≤ P (P1a)

L
∑

l=1

xt
sl = 1, s = 1, ..., S, (P1b)

L
∑

l=1

xd
sl = 1, s = 1, ..., S, (P1c)

xt
sl, x

d
sl ∈ {0, 1} (P1d)

4.2 Proposed Solution
We propose an approximation algorithm which runs in

polynomial time and finds near optimal solutions. Given
an approximation factor ε, an approximation algorithm will
find a solution with a value that is guaranteed to be no
less than (1 − ε) of the optimal solution value, where ε is
a small positive constant. The main steps of our proposed
scalable 3D video multicast (S3VM) algorithm are given in
Figure 2. First, we calculate a single coefficient for the deci-
sion variables in the objective function. For variables associ-
ated with the texture component we have q̂tsl = qtsl

∑

i∈I
αi
s.

Similarly, the coefficient for depth component variables is
q̂dsl = qdsl

∑

i∈I
βi
s. We then find an upper bound on the opti-

mal solution value in order to reduce the search space. This
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Scalable 3D Video Multicast (S3VM) Algorithm

Input: Scheduling window capacity P
Input: TDD frame capacity F
Input: Set of scalably simulcast coded MVD2 3D videos S
Input: Model parameters for each virtual view position of

each video αi
s, β

i
s

Input: Approximation factor ε
Output: Set of substreams to transmit during the cur-

rent scheduling window for texture/depth components
of each 3D video

1: LP-relaxation: relax the integrality constraint (P1d) in
the problem formulation to obtain an LP-relaxation of
the problem.

2: SolveRelaxedLP

3: Drop fractional values, obtain split solution of value z
′

4: Calculate an upper bound (2zh) on the optimal solution,

where zh = max(z
′

, zs)
5: Calculate a scaling factor K

6: Scale the qualities of substreams q
′

sl = �q̂sl/K�
7: Solve the scaled down instance of the problem using dy-

namic programming by reaching to obtain a solution
whose value is no less than (1− ε)z∗

Figure 2: Proposed S3VM algorithm.

is achieved by solving the linear program relaxation of the
MCKP. A linear time partitioning algorithm for solving the
LP-relaxed MCKP exists. It is based on the works of Dyer
[15] and Zemel [16] and does not require any pre-processing
of the classes, such as expensive sorting operations. We
note that a class in Dyer-Zemel [14] represents one of the
two components (texture or depth) of a given 3D video in
our problem. Dyer-Zemel is an iterative algorithm and the
number of classes available at the beginning of an iteration
changes from one iteration to another as the algorithm pro-
ceeds. Thus, at the beginning of S3VM we have 2S classes.
An optimal solution xLP to the linear relaxation of the

MCKP satisfies the following properties: (1) xLP has at
most two fractional variables; and (2) if xLP has two frac-
tional variables, they must be from the same class. When
there are two fractional variables, one of the items corre-
sponding to these two variables is called the split item, and
the class containing the two fractional variables is denoted as
the split class. A split solution is obtained by dropping the
fractional values and maintaining the LP-optimal choices in
each class (i.e. the variables with a value equal to 1). If xLP

has no fractional variables, then the obtained solution is an
optimal solution to the MCKP. By dropping the fractional
values from the LP-relaxation solution, we have a split solu-

tion of value z
′

which we can use to obtain an upper bound.
A heuristic solution to the MCKP with a worst case per-
formance equal to 1/2 of the optimal solution value can be

obtained by taking the maximum of z
′

and zs, where zs

is the sum of the split substream from the split class (the
stream to which the split substream belongs) and the sum
of the qualities of the substreams with the smallest number
of blocks in each of the other streams [14]. Since the opti-

mal objective value z∗ is less than or equal to z
′

+ zs, thus
z∗ ≤ 2zh and we have an upper bound on the optimal solu-
tion value. We use the upper bound in calculating a scaling

factor K for the quality values of the layers. In order to

get a performance guarantee of 1 − ε, we choose K = εzh

2S
.

The quality values are scaled down to q
′

sl = �q̂sl/K�. We
then proceed to solve the scaled down instance of the prob-
lem using dynamic programming by reaching (also known as
dynamic programming by profits).

Let B(g, q) denote the minimal number of blocks for a
solution of an instance of the substream selection problem
consisting of stream components 1, ..., g, where 1 ≤ g ≤ 2S,
such that the total quality of the selected substreams is q.
For all components g ∈ {1, ..., 2S} and all quality values q ∈
{0, ..., 2zh}, we construct a table where the cell values are
B(g, q) for the corresponding g and q values. If no solution
with total quality of q exists, B(g, q) is set to ∞. Initializing
B(0, 0) = 0 and B(0, q) = ∞ for q = 1, ..., 2zh, the values
for classes 1, ..., g are calculated for g = 1, ..., 2S and q =
1, ..., 2zh using the recursion shown in Eq. (2).

B(g, q) = min































B(g − 1, q − qg1) + bg1 if 0 ≤ q − qg1

B(g − 1, q − qg2) + bg2 if 0 ≤ q − qg2

...

B(g − 1, q − qgng ) + bgng if 0 ≤ q − qgng

(2)
The value of the optimal solution is given by Eq. (3). To

obtain the solution vector for the substreams to be trans-
mitted, we perform backtracking from the cell containing
the optimal value.

Q∗ = max{q|B(2S, q) ≤ P}. (3)

5. EVALUATION

5.1 Setup
We implemented the proposed substream selection algo-

rithm in Java and evaluated its performance using scalable
video trace files. To generate the video traffic, we used six
3D video sequences from the MPEG 3DV ad-hoc group data
set: Champagne Tower, Pantomime, Kendo, Balloons, Love-
bird1, and Newspaper. We divide each sequence into four
60-frame (2-sec) segments to obtain 24 multiview-plus-depth
video streams. The texture and depth streams were then en-
coded using the JSVM reference software version 9.19 [17]
into one base layer and four medium grain scalability (MGS)
layers. The QP values used in the encoding process are 36,
34, 30, 28, and 26. We then extract and decode each of
the substreams from the encoded bitstreams and calculate
the average quality and total bit rate for the correspond-
ing layers of the left and right reference views. For each
texture-depth quality combination, three intermediate views
are synthesized using VSRS 3.5 [18]. We synthesize virtual
views by using the general synthesis mode with half-pel pre-
cision. The quality of the synthesized views are compared
against the quality of views synthesized from the original
non-compressed references. These values are then used along
with average qualities obtained for the compressed reference
texture and depth substreams to obtain the model param-
eters at each synthesized view position. We consider a 20-
MHz Mobile WiMAX channel, which supports data rates
up to 60 Mbps depending on the modulation and coding
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Figure 3: Average quality of solutions obtained using the S3VM algorithm versus optimal solutions.

scheme [19]. The typical frame duration in Mobile WiMAX
is 5 ms. Thus, for a 1-sec scheduling window, there are 200
TDD frames. We assume that the size of the MBS area
within each frame is 100 kb. The initial multicast channel
bit rate is therefore 20 Mbps. To assess the performance of
our algorithm, we run several experiments, as described in
the sequel, and compare our results with the optimal sub-
stream selection solution obtained using CPLEX LP/MIP
solver [20]. The two performance metrics used in our evalu-
ation are: average video quality (over all synthesized views
and all streams), and running time.

5.2 Results
Video Quality. In the first experiment, we study the

performance of our algorithm in terms of video quality. We
first fix the MBS area size at 100 kb and vary the number of
3D video streams from 10 to 35 streams. The approximation
parameter ε is set to 0.1. We calculate the average qual-
ity across all video streams for all synthesized intermediate
views. We compare the results obtained from our algorithm
to those obtained from the absolute optimal substream set
returned by the CPLEX optimization software. The results
are shown in Figure 3(a). As expected, the average quality
of a feasible solution decreases since more video data need
to be allocated within the scheduling window. However, it is
clear that our algorithm returns a near optimal solution with
a set of substreams that results in an average quality that
is less than the optimal solution by at most 0.3 dB. More-
over, as the number of videos increases, the gap between the
solution returned by the S3VM algorithm and the optimal
solution decreases. This indicates that our algorithm scales
well with the number of streams to be transmitted.
We then fix the number of video streams at 30 and vary

the capacity of the MBS area from 100 kb to 350 kb, re-
flecting data transmission rates ranging from 20 Mbps to
70 Mbps. As can be seen from the results in Figure 3(b),
the quality of the solution obtained by our algorithm again
closely follows that of the optimal solution.
Running Time. In the second set of experiments, we

evaluate the running time of our algorithm against that of
finding the optimum solution. Fixing the approximation pa-
rameter at 0.1 and the MBS area size at 100 kb, we measure
the running time of our algorithm for a variable number of
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Figure 4: Average running times for a variable num-
ber of video streams.

3D video streams. Figure 4 compares our results with those
measured for obtaining the optimal solution. As shown in
the figure, the running time of the S3VM algorithm is al-
most a quarter of the time required to obtain the optimal
solution for all samples. Next, we fix the number of videos
at 30 streams and the MBS area size was varied from 100
kb to 350 kb. Results indicate that the running time of our
algorithm is still significantly less than that of the optimum
solution, 6.6 times faster on average.

Approximation Parameter. In the last experiment, we
study the effect of the approximation parameter value ε on
the running time of our algorithm. We use 30 video streams
with an MBS area size of 100 kb, and vary ε from 0.1 to
0.5. Increasing the value of the approximation parameter
results in significantly faster running times, 2.3 to 4.7 times
faster than running time for obtaining optimal solution us-
ing CPLEX. In the description of the S3VM algorithm in
Section 4.2, the scaling factor K is proportional to the value
of ε. Therefore, increasing ε results in smaller quality values
which reduces the size of the dynamic programming table
and consequently the running time of the algorithm at the
cost of increasing the gap between the returned solution and
optimal solution, as illustrated in Figure 5.
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Figure 5: Impact of approximation parameter value
on obtained video quality.

6. CONCLUSIONS
We formulated the 3D video multicasting problem in wire-

less environments. In this problem, it is required to se-
lect the reference representation that maximizes the quality
of the synthesized views rendered on the receiver’s display
given the bandwidth limitations of the channel. We showed
that the problem is NP-Complete. We presented an ap-
proximation algorithm for solving the problem in multicast
services over 4G wireless networks. Our algorithm leverages
scalable coded multiview-plus-depth 3D videos and performs
joint texture-depth rate-distortion optimized substream ex-
traction to maximize the average quality of rendered views
over all 3D video streams. We evaluated the performance of
our algorithm by trace-based simulations using traces from
six 3D videos that have different characteristics. Each of
these videos is encoded into 5 quality layers. Results show
that our algorithm runs much faster than enumerative algo-
rithms for finding the optimal solution. And returned set of
substreams yields an average synthesized views quality that
is within 0.3 dB of the optimal.
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